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1.3.3 The Lévy characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 The Girsanov Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 The Black Scholes World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Portfolios and Trading Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Arbitrage and Valuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Forwards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Put-Call Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.3 Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Black-Scholes: the Original Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Probabilistic solution of the Black-Scholes PDE . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Proof by Martingale Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Robustness of Black-Scholes Hedging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Options on Dividend-paying Assets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 Barrier Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Multi-Asset Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 The Margrabe Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 The Probabilistic Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2 Hedging an Exchange Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.3 Exercise Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.4 Margrabe with dividends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.5 Black-Scholes as a special case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Cross-Currency Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Forward FX rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2 The domestic risk-neutral measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



VI Contents

3.2.3 Option Valuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.4 Hedging Quanto Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
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1

Further Results in Stochastic Analysis

1.1 The Martingale Representation Theorem for Brownian Motion

Let Wt, t ≥ 0 be a Brownian motion on a probability space (Ω,F , P ), and let Ft be the natural
filtration: Ft = σ{Ws, 0 ≤ s ≤ t}.

Theorem 1.1. Let T > 0 and suppose that X ∈ L2(Ω,FT , P ). Then there exists an adapted
process gt such that E

∫ T
0
g2(s)ds <∞ and

X = EX +

∫ T

0

g(s)dWs. (1.1)

The proof follows from the Lemmas below. First, recall that a subset D of L2(Ω,FT , P ) is dense
if for every X ∈ L2(Ω,FT , P ) we have D ∩B 6= ∅ for every neighbourhood B of X. In particular,
there exists a sequence Xn ∈ D such that Xn → X.

Lemma 1.2. Theorem 1.1 holds if the representation (1.1) holds for every X in some dense subset

D of L2(Ω,FT , P ).

Proof: Let X ∈ L2(Ω,FT , P ) and take Xn ∈ D, Xn → X as described above. Then EXn → EX

and there exist integrands gn such that

Xn = EXn +

∫ T

0

gn(s)dWs. (1.2)

Taking X̃n = Xn − EXn we have the Ito isometry

E(X̃n − X̃m)
2 = E

∫ T

0

(gn(s)− gm(s))
2ds (1.3)

Since X̃n is convergent, it is a Cauchy sequence, and hence from (1.3) the sequence gn is convergent

in L2(Ω × [0, T ], dP × dt). Thus there exists g such that

E

∫ T

0

(gn(s)− g(s))
2ds→ 0 as n→∞

and (1.1) holds with this integrand g. ♦

Let DT be the subset of L2(Ω,FT , P ) consisting of random variables X of the form X =

h(Wt1 ,Wt2 , . . .Wtn), where n is an integer, h is a bounded continuous function from Rn to R, and

0 ≤ t1 < . . . < Tn ≤ T . The proof of the following result is an elegant application of the martingale
convergence theorem. See Øksendal [7], Lemma 4.3.1.

Lemma 1.3. DT is dense in L2(Ω,FT , P ).
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To prove the Theorem, it remains to show that any X ∈ DT has the representation property, and
this we can show by a direct argument. In the following, we take n = 2; the extension to n > 2 is

obvious. First, a fact about conditional expectation.

Lemma 1.4. Let X,Y be random variables taking values in Rn, Rm respectively, on a probability

space (Ω,F , P ). Let G be a sub-σ-field of F , and suppose that X is independent of G while Y is
G-measurable. Then for any measurable function f : Rn+m → R such that E|f(X,Y )| < ∞, we
have

E[f(X,Y )|G] = b(Y ),

where

b(y) =

∫

Rn
f(x, y)μX(dx).

Here μX is the distribution of X, the measure on the Borel sets Bn of Rn defined by μX(B) =
P (X ∈ B) for B ∈ Bn.

Proof: We have to show that for all bounded real-valued G-measurable random variables Z we
have

E[Zf(X,Y )] = E[Zb(Y )].

Let μX,Y,Z be the distribution of the R
n+m+1-valued r.v. (X,Y, Z). SinceX is independent of G, the

random variables X and (Y,Z) are independent, so that μX,Y,Z(dx, dy, dz) = μX(dx)μY,Z(dy, dz).

Hence

E[Zf(X,Y )] =

∫
zf(x, y)μX,Y,Z(dx, dy, dz)

=

∫
z

(∫
f(x, y)μX(dx)

)

μY,Z(dy, dz)

=

∫
zb(y)μY,Z(dy, dz)

= E[Zb(Y )].

Lemma 1.5. Let h : R2 → R be a bounded continuous function and let t1, t2, t satisfy 0 ≤ t1 ≤
t ≤ t2. Then

E[h(Wt1 ,Wt2)|Ft] = v1(t,Wt1 ,Wt),

where

v1(t, x, y) =

∫
h(x, z)

1
√
2π(t2 − t)

e(z−y)
2/2(t2−t)dz. (1.4)

Proof: Writing h(Wt1 ,Wt2) = h(Wt1 , (Wt2 −Wt) +Wt), this follows immediately from Lemma
1.5, on taking X =Wt2 −Wt1 ,Y = (Wt1 ,Wt) ∈ R

2 and f(x, y) = h(y1, x+ y2), and recalling that

X ∼ N(0, t2 − t). ♦

Lemma 1.6. The random variable X = h(Wt1 ,Wt2), as defined in Lemma 1.5, has the represen-

tation property.

Proof: It can be checked directly from (1.4) that the function v1 satisfies

∂v1

∂t
(t, x, y) +

1

2

∂2v1

∂y2
(t, x, y) = 0

and v1(T, x, y) = h(x, y). Hence by the Ito formula

h(Wt1 ,Wt2) = v1(T,Wt1 ,Wt2) = v1(t1,Wt1 ,Wt1) +

∫ t2

t1

∂v1

∂y
(s,Wt1 ,Ws)dWs, (1.5)
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and we know from Lemma 1.5 that v1(t1,Wt1 ,Wt1) = E[h(Wt1 ,Wt2)|Ft1 ]. Now define v0(t1, x) =
v1(t1, x, x), and, for t < t1

v0(t, x) =

∫
v0(t1, z)

1
√
2π(t1 − t)

e(z−x)
2/2(t1−t)dz. (1.6)

As above, we have
∂v0

∂t
(t, x) +

1

2

∂2v1

∂x2
(t, x) = 0,

and the Ito formula gives

v0(t1,Wt1) = v1(t1,Wt1 ,Wt1) = v0(0, 0) +

∫ t1

0

∂v0

∂y
(s,Ws)dWs. (1.7)

From (1.5),(1.7) we now see that

h(Wt1 ,Wt2) = v0(0, 0) +

∫ t2

0

g(s)dWs,

where

g(s) =

{
(∂v0/∂y)(s,Ws), s < t1

(∂v1/∂y)(s,Wt1 ,Ws), t1 ≤ s < t2
,

and that

v0(0, 0) = E[h(Wt1 ,Wt2)].

This completes the proof.

1.2 Changes of Measure

1.2.1 Normal distributions

A random variable X is normally distributed, written X ∼ N(μ, σ2), if its characteristic function

ψ takes the form

ψμ(u) = Ee
iuX = exp

(

iuμ−
1

2
u2σ2

)

. (1.8)

This corresponds to the density function φ given by

φμ(x) =
1

√
2πσ2

exp

(

−
1

2σ2
(x− μ)2

)

.

μ and σ are the mean and standard deviation respectively. (σ is fixed in the following and so is

not included in the notation.)

If X ∼ N(μ, σ2) then for any bounded function f ,

E[f(X)] =

∫
f(x)φμ(x)dx,

For any ν we can trivially write this as

E[f(X)] =

∫
f(x)

φμ(x)

φν(x)
φν(x)dx, (1.9)

and we find that
φμ(x)

φν(x)
= exp

(
1

σ2
(μ− ν)x−

1

2σ2
(μ2 − ν2)

)

. (1.10)

Let us denote by Λ the random variable Λ = φμ(X)/φν(X). We find that
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• Λ > 0, Eν [Λ] = 1

• Eμ[f(X)] = Eν [f(X)Λ], where Eμ denotes integration wrt N(μ, σ
2)

To see the first of these, take f(x) ≡ 1 in (1.9), or use (1.10) and the fact that if X ∼ N(ν, σ2)

then

EeX = eν+
1
2σ
2

.

We can thus flip between Eμ and Eν by introducing Λ, the likelihood ratio or Radon-Nikodym

derivative. In most applications, ν = 0.

1.2.2 A General Setting

Let (Ω,F , P ) be a probability space, and Λ be a r.v. such that Λ ≥ 0 a.s. and EΛ = 1. Then we
can define a measure Q on (Ω,F) by

QF =

∫

F

ΛdP, F ∈ F . (1.11)

Λ is often written dQ/dP and is the Radon-Nikodym derivative of Q wrt P . Note that PF =

0⇒ QF = 0; we say that Q is absolutely continuous wrt P , written Q� P . The Radon-Nikodym

theorem states that any Q that is absolutely continuous wrt P can be written as (1.11) for some

Λ. If Λ > 0 a.s. then P is absolutely continuous wrt Q, with RN derivative dP/dQ = 1/Λ. In this

case P and Q are said to be equivalent, written P ∼ Q. Measures P and Q are equivalent if and

only if they have the same null sets : PF = 0⇔ QF = 0.

1.2.3 Conditional Expectations

Let X be an integrable r.v. and G a sub-sigma-field of F . The conditional expectation of X given
G is the unique G-measurable r.v., denoted E[X|G] such that

∫

G

XdP =

∫

G

E[X|G]dP.

Key properties:

1. E[X|G] = X if X is G-measurable
2. E[X|G] = EX if X is independent of G
3. E[Y X|G] = Y E[X|G] if Y is G-measurable
4. For H ⊂ G, E[X|H] = E[E[X|G]|H]. In particular, EX = E(E[X|G]) for any sub-σ-field G.

Existence of E[X|G] follows from the Radon-Nikodym theorem. Indeed, the formula Q(A) =
∫
A
XdP defines a measure on (Ω,G) that is absolutely continuous wrt P ′, the restriction of P

to G. Hence there exists a G-measurable function Λ such that Q(A) =
∫
A
ΛdP ′.

The following result will be needed in Section 1.3.3 below.

Lemma 1.7. Suppose X,X1, X2, . . . is a sequence of integrable random variables such that Xn →
X in L1. Then for any σ-field G, E[Xn|G]→ E[X|G] in L1.

Proof: First we show that if Y is any integrable r.v. then

|E[Y |G]| ≤ E[|Y | |G] a.s. (1.12)

Indeed, denoting as usual Y + = max(Y, 0) and Y − = Y + − Y , we have

E[Y |G]+ = E[Y + − Y −|G]+ ≤ E[Y +|G]+ = E[Y +|G]
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and

E[Y |G]− = E[−Y |G]+ ≤ E[(−Y )+|G] = E[Y −|G],

from which (1.12) follows. Now if Xn → X in L1 then using (1.12)

E |E[Xn|G]− E[X|G]| = E |E[Xn −X|G]|

≤ E (E[|Xn −X| |G])

= E|Xn −X| → 0.

Conditional expectation under change of measure

If P,Q are measures on (Ω,F) such that Q � P with RN derivative Λ = dQ/dP , and G is a
sub-sigma-field of F then

EQ[X|G] =
E[XΛ|G]
E[Λ|G]

a.s. Q (1.13)

To see this, calculate E[XΛ|G] by taking a set G ∈ G and using the above properties of conditional
expectation. We get

∫

G

E[XΛ|G]dP =
∫

G

XΛdP

=

∫

G

XdQ

=

∫

G

EQ[X|G]dQ

=

∫

G

EQ[X|G]ΛdP

=

∫

G

EQ[X|G]E[Λ|G]dP

Thus
∫
G
ZdP = 0 for all G ∈ G, where Z = E[XΛ|G]−EQ[X|G]E[Λ|G] is a G-measurable random

variable. Hence Z = 0 a.s. This gives (1.13) on noting that, by definition, the set {ω : E[Λ|G] = 0}
has Q-measure 0.

Changes of measure and martingales

Take a probability space (Ω,F , P ) equipped with a filtration (Ft, t ∈ [0, T ]). Assume for conve-
nience that F = FT , and suppose there is another measure Q, defined by dQ/dP = Λ, where Λ is
a non-negative r.v. with EΛ = 1. An adapted process (Xt) is a martingale (under measure P ) if it

is integrable and for s ≤ t
Xs = E[Xt|Fs] a.s.

The main result we need is this: a process Yt is a Q-martingale if and only if the process Xt = YtΛt
is a P -martingale, where Λt = E[Λ|Ft]. This follows from (1.13). Indeed, for s < t we have

EQ[Yt|Fs] =
E[YtΛ|Fs]
E[Λ|Fs]

=
E[YtΛt|Fs]

Λs

If Yt is a Q-martingale the left-hand side is equal to Ys, so that YtΛt is a martingale, while if YtΛt
is a martingale then the right-hand side is equal to Ys, showing that Yt is a Q-martingale.

A process Xt is a local martingale if there exists a sequence of stopping times τn such that

τn →∞ a.s. and for each n the process Xnt = Xt∧τn is a martingale. It is also true that a process
Yt is a Q-local martingale if and only if the process Xt = YtΛt is a P -local martingale. Exercise:

show this.
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1.3 The Lévy characterization of Brownian Motion

1.3.1 Quadratic variation of Brownian motion

Let Wt be a Brownian motion process and let T be a fixed time. For n = 1, 2, . . . let {tni , i = 0..kn}
be an increasing sequences of times with tn0 = 0, t

n
kn
= T . DenoteΔWi =Wtn

i+1
−Wtn

i
,Δti = t

n
i+1−t

n
i

and Sn =
∑
iΔW

2
i . Note that the r.v. ΔWi are independent with EΔWi = 0, EΔW

2
i = Δti. Hence

that ESn = T and

ES2n = 2
∑

i

Δt2i + T
2. (1.14)

The latter follows from a short calculation using the fact that if X ∼ N(0, σ2) then EX4 = 3σ4.

From (1.14),

var(Sn) = E(Sn − T )
2

= 2
∑

i

Δt2i

≤ 2max
i
{Δti}

∑

i

ΔTi

= 2T max
i
{Δti}. (1.15)

Hence Sn → T in L2 as n→∞ as long as maxi{Δti} → 0.
Let us now specialize to the case tni = i/2

n. From (1.15) and the Chebyshev inequality, for any

ε > 0

P [|Sn − T )| > ε] ≤
2T2−n

ε2
.

Taking ε = 1/n we find that

∑

n

P

[

|Sn − T )| >
1

n

]

≤
∑

n

2Tn22−n <∞

Hence by the Borel-Cantelli lemma we have

P

[

|Sn − T | >
1

n
infinitely often

]

= 0,

showing that Sn → T almost surely. Thus for each T > 0 the quadratic variation QV(T ) is equal

to the deterministic function QV(T ) = T .

Suppose now that Xt is a continuous process with sample paths of bounded variation, i.e.

sup
n

∑

i

∣
∣
∣Xtn

i+1
−Xtn

i

∣
∣
∣ <∞ a.s.

For example, any process of the form Xt =
∫ t
0
φ(s)ds with integrable φ satisfies this. Let us compute

the quadratic variation of Yt =Wt +Xt. We have

∑

i

(Ytn
i+1
− Ytn

i
)2 =

∑

i

(Wtn
i+1
−Wtn

i
+Xtn

i+1
−Xtn

i
)2

=
∑

i

ΔW 2
i +

∑

i

ΔX2i + 2
∑

i

ΔWiΔXi

where ΔWi = Wtn
i+1
−Wtn

i
etc. The first term converges to T and the second and third converge

to 0: for the third term,



1.3 The Lévy characterization of Brownian Motion 7

∑

i

(Wtn
i+1
−Wtn

i
)(Xtn

i+1
−Xtn

i
) ≤ max

i
|Wtn

i+1
−Wtn

i
|
∑

i

|Xtn
i+1
−Xtn

i
|.

The sum on the right is bounded and the “max” converges to zero because Wt is a continuous

function. A similar argument applies to the second term.

We have shown that the quadratic variation of W and Y are the same: the quadratic variation

of W is not altered by adding a bounded variation perturbation to the sample path.

1.3.2 Quadratic variation of continuous martingales

We can’t treat this subject in complete detail here; see [8] pages 52-55 or [2]. LetMt be a martingale

on a filtered probability space (Ω,F , (Ft), P ). Because of the martingale property,

E[(Mt −Ms)
2|Fs] = E[M

2
t +M

2
s − 2MtMs|Fs] = E[M

2
t −M

2
s |Fs]. (1.16)

and hence with the notation above

E

[
∑

i

(Mtn
i+1
−Mtn

i
)2

]

= E

[
∑

i

E
(
(Mtn

i+1
−Mtn

i
)2
∣
∣
∣Ftn

i

)
]

= EM2
T , (1.17)

using (1.16). This suggests that the left-hand side has a limit as n → ∞, the quadratic variation
of (Mt).

When (Mt) is Brownian motion we have from (1.16) for t > s

E[M2
t |Fs] = E[M2

t −M
2
s |Fs] +M

2
s

= E[(Mt −Ms)
2|Fs] +M

2
s

= t− s+M2
s .

Hence the process M2
t − t is a martingale. The general situation is as follows.

Theorem 1.8. Let Mt be a continuous local martingale. Then there is a unique continuous in-

creasing process, denoted [M ]t, such that M
2
t − [M ]t is a local martingale. [M ]t is the quadratic

variation of Mt: it is the almost sure limit of approximating sums as in (1.17) taken along suitable

sequences (tni ).

We call a process Xt a semimartingale if it can be expressed as Xt = Mt + At where Mt is

a martingale and At is a process whose sample paths have bounded variation. Xt is a continuous

semimartingale if both Mt and At have continuous sample paths, and a local semimartingale

if Mt is a local martingale. The existence of [M ]t gives us an Ito formula for continuous local

semimartingales, analogous to the usual Ito formula for Brownian motion.

Theorem 1.9. Let Xt be a continuous local smimartingale and f a C
1,2 function. Then

df(t,Xt) =
∂f

∂t
dt+

∂f

∂x
dXt +

1

2

∂2f

∂x2
d[M ]t (1.18)

1.3.3 The Lévy characterization

Theorem 1.10. LetMt be a continuous local martingale on a filtered probability space (Ω,F , (Ft), P ),
and suppose that [M ]t = t, t ≥ 0. Then Mt is an Ft-Brownian motion.

Proof: Suppose Mt is a continuous local martingale with [M ]t = t and take f(t, x) = exp(iux+

u2t/2). By applying (1.18) to the real and imaginary parts of f you can check that (1.18) is also

valid for complex functions. We obtain
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df(t,Mt) =
1

2
u2f(t,Mt)dt+ iuf(t,Mt)dMt −

1

2
u2f(t,Mt)d[M ]t,

so that f(t,Mt) is a local martingale if [M ]t = t. Thus for t > s we have

E
[
eiuMt∧τn+

1
2u
2t∧τn

∣
∣
∣Fs

]
= eiuMs∧τn+

1
2u
2s∧τn , (1.19)

where τn is a sequence of localizing times. Now the sequence exp(iuMs∧τn+
1
2u
2(s∧τn)) is bounded

and converges almost surely (and hence in L1) to exp(iuMs+
1
2u
2s). By Lemma 1.7, the conditional

expectation in (1.19) converges in L1 to the conditional expectation of the limit, and we conclude

that

E
[
eiuMt+

1
2u
2t
∣
∣
∣Fs

]
= eiuMs+

1
2u
2s,

or, equivalently,

E
[
eiu(Mt−Ms)

∣
∣
∣Fs

]
= e−

1
2u
2(t−s). (1.20)

Now let Y be any Fs-measurable random variable, and ψY be the characteristic function of Y .
Then by Property (3) of conditional expectation (see Section 1.2.3 above) the joint characteristic

function of Y and Mt −Ms is

ψY,Mt−Ms(v, u) = E
[
ei(vY+u(Mt−Ms))

]

= E
[
eivY eiu(Mt−Ms)

]

= E
[
eivY E

[
eiu(Mt−Ms)

∣
∣
∣Fs

]]

= E
[
eivY

]
e−

1
2u
2(t−s)

= ψY (v)ψMt−Ms(u).

Thus Y and (Mt − Ms) are independent, implying – since Y is arbitrary – that (Mt − Ms) is

independent of Fs. From (1.20), (Mt−Ms) is normally distributed with mean 0 and variance t−s.
Hence (Mt) is an (Ft) Brownian motion. ♦

The vector case

In Chapter 3 we will need a vector version of the Lévy characterization. Thus, let Mt =

(M1
t , . . . ,M

n
t ) be an n-vector process each of whose components M

i
t is a continuous local martin-

gale on a filtered probability space (Ω,F , (Ft), P ). Note that for any two numbers a, b we have
ab = 1

4 ((a + b)
2 − (a − b)2). (This is sometimes called the ‘polarization formula’.) With this in

mind, define

[M i,M j ]t =
1

4

(
[M i +M j ]t − [M

i −M j ]t
)
.

The processes [M i+M j ], [M i−M j ] are the quadratic variation processes of the local martingales

M i + M j and M i − M j respectively, as introduced in Theorem 1.8 above. [M i,M j ] is some-

times called the ‘cross-variation’ of the local martingales M i,M j . Note that [M i,M i] = [M i]. We

can write the cross-variation as a symmetric n × n matrix, denoted [M ]t, with i, j’th component
[M i,M j ]. We leave it as an exercise for the reader to show that this matrix is almost surely non-

negative definite. The vector version of the Ito formula (1.18) for continuous local semimartingales

is as follows. We start with a vector of continuous local semimartingales Xit =M
i
t+A

i
t, i = 1, . . . , n.

Denote [Xi, Xj ] = [M i,M j ]. Then for any C1,2 function f : R+ ×Rn → R, we have

df(t,Xt) =
∂f

∂t
dt+

n∑

i=1

∂f

∂xi
dXi +

1

2

n∑

i,j=1

∂2f

∂xi∂xj
d[Xi, Xj ]. (1.21)
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A particularly useful special case of (1.21) is the product formula :

d(X1tX
2
t ) = X

1
t dX

2
t +X

1
t dX

2
t + d[X

1, X2]t. (1.22)

Theorem 1.11. Let Mt be an R
n-valued continuous local martingale as described above, and sup-

pose that [M ]t = It, where I denotes the n×n identity matrix. Then the componentsM i
t , i = 1, . . . , n

are independent Brownian motions.

The proof of this result is essentially the same as that of the univariate case, Theorem 1.10 above.

We show that under the condition stated, for any n-vector u and t > s,

E
[
ei<u,Mt−Ms>

∣
∣Fs

]
= e−

1
2 |u|

2(t−s).

As before, this shows that the increment Mt −Ms is independent of Fs with distribution
N(0, I(t− s)). The conclusion follows.

1.4 The Girsanov Theorem

The Girsanov theorem states that, for Brownian motion, absolutely continuous change of measure

is equivalent to change of drift.

Theorem 1.12. Let (Ω,F , {Ft}t∈[0,T ], P ) be a filtered probability space, where 0 < T <∞ and we
assume for convenience that F = FT . Let wt be an (Ft, P )-Brownian motion.
(a) Let g(t) be an adapted process satisfying

∫ T
0
g2(s)ds <∞ a.s. and define

ΛT = exp

(∫ T

0

g(s)dws −
1

2

∫ T

0

g2(s)ds

)

. (1.23)

Suppose that E[ΛT ] = 1, and define a measure Q on (Ω,F) by dQ/dP = ΛT . Then under measure
Q the process w̃t defined by

w̃t = wt −
∫ t

0

g(s)ds

is an Ft Brownian motion.
(b) Suppose Ft is the natural filtration of wt and that Q is a measure such that Q ∼ P . Then there
exists a process g(t) such that dQ/dP is equal to ΛT defined by (1.23).

Proof: (a) The assumption that EΛT = 1 ensures that Q is a probability measure. Applying the

Ito formula, we find that

d(w̃Λ) = Λ(w̃g + 1)dw,

so that w̃Λ is a local martingale which implies, as shown in section 1.2.3, that w̃ is a Q-local

martingale. Certainly w̃ has continuous sample paths, and by the argument in section 1.3.1 the

quadratic variation of w̃ is equal to t. By the Lévy characterization, w̃ is a Q-Brownian motion.

(b) Let Q be an equivalent measure and define ΛT = dQ/dP . Then ΛT > 0 a.s. and EΛT = 1.

For any t ∈ [0, T ] let P t, Qt denote the restrictions of P and Q to Ft. Then P t ∼ Qt and the

Radon-Nikodym derivative is dQt/dP t := Λt = E[ΛT |Ft]. Hence Λt > 0 a.s. By the martingale
representation theorem for Brownian motion, there exists an integrand φ such that

∫ T
0
φ2(t)dt <∞

and

Λt = 1 +

∫ t

0

φ(s)dws, 0 ≤ t ≤ T. (1.24)

Now apply the Ito formula to calculate
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d logΛt =
1

Λt
φ(t)dwt −

1

2

1

Λ2t
φ2(t)dt.

Thus ΛT is given by (1.23) with g(t) = φ(t)/Λt. ♦

Remarks (a) Let Mt be a non-negative local martingale, i.e. for times τn ↑ ∞, for t > s

Ms∧τn = E[Mt∧τn |Fs].

Thus, using Fatou’s lemma for conditional expectation,

Ms = lim infnMs∧τn

= lim infnE[Mt∧τn |Fs]

≥ E[lim infnMt∧τn |Fs]

= E[Mt|Fs].

Thus any non-negative local martingale is a supermartingale, so that in particular EMt is a decreas-

ing function of t. Now ΛT defined by (1.23) is a non-negative local martingale, so the assumption

that EΛT = 1 implies that EΛt = 1 for all t ∈ [0, T ], since Λ0 = 1 a.s.

(b) The best general sufficient condition implying EΛT = 1 is the Novikov condition

E exp

(
1

2

∫ T

0

g2(s)ds

)

<∞.



2

The Black Scholes World

2.1 The Model

To start with we consider a world with just one risky asset with price process St and a risk-free

savings account paying constant interest rate r with continuous compounding. Everything takes

place in a finite time interval [0, T ].

Let (Ω,F , (Ft)t∈[0,T ], (wt)t∈[0,T ]) be Wiener space, i.e. wt is Brownian motion, Ft is the natural
filtration of wt and F = Ft. The price process St is supposed to be geometric Brownian motion :
St satisfies the SDE

dSt = μStdt+ σStdwt (2.1)

for given drift μ and volatility σ. (2.1) has a unique solution: if St satifies (2.1) then by the Ito

formula

d logSt = (μ−
1

2
σ2)dt+ σdwt,

so that St satisfies (2.1) if and only if

St = S0 exp((μ−
1

2
σ2)t+ σwt). (2.2)

Note that this makes St very easy to simulate: for any increasing sequence of times 0 = t0 < t1 . . .,

Sti = Sti−1 exp

(

(μ−
1

2
σ2)(ti − ti−1) + σ

√
ti − ti−1Xi

)

,

where X1, X2, . . . is a sequence of independent N [0, 1] random variables. This representation is

exact. Another thing that follows from (2.2) is that ESt = S0e
μt.

In the interests of symmetry we want the savings account also to be expressed as a traded

asset, i.e. we should invest in it by buying a certain number of units of something. A convenient

‘something’ is a zero-coupon bond

Bt = exp(−r(T − t)).

This grows, as required, at rate r:

dBt = rBtdt (2.3)

Note that (2.3) does not depend on the final maturity T (the same growth rate is obtained from

any ZC bond) and the choice of T is a matter of convenience as we will see below.

2.2 Portfolios and Trading Strategies

If we hold φ and ψ units of S and B respectively at time t then we have a portfolio whose time-

t value is φSt + ψBt. The assumptions of Black-Scholes are that we have a frictionless market,
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meaning that S and B can be traded in arbitrary amounts with no transaction costs, and short

positions are allowed. In particular this means we can invest in, or borrow from, the riskless account

at the same rate r of interest. A trading strategy is then a triple (φt, ψt, x0), where x0 is the initial

endowment and (φt, ψt) is a pair of adapted processes satisfying

∫ T

0

φ2tdt <∞ a.s.,

∫ T

0

|ψt|dt <∞.

The gain from trade in [s, t] is then

∫ t

s

φudSu +

∫ t

s

ψudBu.

(Note how this matches up with the definition of the Ito integral!) A portfolio is self-financing if

φtSt + ψtBt − φsSs − ψsBs =
∫ t

s

φudSu +

∫ t

s

ψudBu.

The increase in portfolio value is entirely due to gains from trade.

2.3 Arbitrage and Valuation

Denote by Vt the portfolio value at time t, i.e. Vt = φtSt + ψtBt. An arbitrage opportunity is

the existence of a self-financing trading strategy and a time t such that V0 = 0, Vt ≥ 0 a.s. and
P [Vt > 0] > 0 (or, equivalently, EVt > 0.) It is axiomatic that arbitrage cannot exist in the market,

so no mathematical model should permit arbitrage opportunities.

2.3.1 Forwards

Consider a forward contract in which we fix a price K now to be paid at time T for delivery of 1

unit of ST . The unique no-arbitrage value of K is F = e
rTS0. Indeed, suppose someone offers us a

forward contract at K < F . We sell one share and invest the proceeds S0 in the bank. At time T

we get the share back for a payment of K but the value of our bank account is F > K. We make

a riskless profit of F −K. If we are able to offer a forward at K > F then we should borrow S0

and buy the share. Again, there is a riskless profit at time T . (This argument is independent of

the pricing model for St.)

2.3.2 Put-Call Parity

A call option with strike K and exercise time T has exercise value [ST−K]+, and a put has exercise
value [K − ST ]+. Clearly

[ST −K]
+ − [K − ST ]

+ = ST −K,

so that buying a call and selling a put at time zero is equivalent to buying a forward and agreeing

to pay K at time T . Thus whatever the prices C0 and P0 at time 0, they must satisfy

C0 − P0 = (F −K)B0.

Note again that this is completely model-independent.
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2.3.3 Replication

Suppose there is a contingent claim with exercise value h(ST ) at time T (for example a put or

call option) and there exists a self-financing trading strategy (φ, ψ, x0) such that VT = h(ST ) a.s.

Then x0 is the unique no-arbitrage price of the contingent claim. The arbitrage, if available, is

realized by selling the contingent claim and going long the replicating portfolio, or vice versa. This

argument is sometimes known as the law of one price: if two assets have identical cash flows in the

future then they must have the same value now.

2.4 Black-Scholes: the Original Proof

Black’s and Scholes’ original proof of the famous formula [1] was a very direct argument showing

that a replicating portfolio exists for the European call option. Here is a version of that argument.

The idea is to assume a whole lot of things and then show they are all true. The first assumption

is that there is a smooth function C(t, S) such that the call option has a value C(t, St) at time

t < T , with limt↑T C(t, S) = [S −K]+. Suppose we form a portfolio in which we are long one unit
of the call option and short a self-financing portfolio (φ, ψ,C(0, S0)). The value of this portfolio at

time t is then

Xt = C(t, St)− φtSt − ψtBt,

with, in particular, X0 = 0. By the Ito formula and the self-financing property,

dXt =
∂C

∂S
dS +

(
∂C

∂t
+
1

2
σ2S2t

∂2C

∂S2

)

dt− φtdSt − ψtdBt.

If we choose φt = ∂C/∂S and use the fact that dB = rBdt we see that

dXt =

(
∂C

∂t
+
1

2
σ2S2t

∂2C

∂S2
dt− ψtrBt

)

dt.

Let us now choose

ψt =
∂C
∂t
+ 12σ

2S2t
∂2C
∂S2

rBt
,

heroically assuming that in doing so we have not destroyed that self-financing property. Then

Xt ≡ 0, so that

C = φS + ψB = S
∂C

∂S
+
∂C
∂t
+ 12σ

2S2t
∂2C
∂S2

r
,

showing that C must satisfy the Black-Scholes PDE

∂C

∂t
+ rS

∂C

∂S
++
1

2
σ2S2t

∂2C

∂S2
− rC =0 (2.4)

with boundary condition

C(T, S) = [S −K]+. (2.5)

Equations (2.4),(2.5) are enough to determine the function C, as we will show below. Is (φ, ψ, x0)

in fact self-financing? By definition φS + ψB = C (since Xt ≡ 0) and

∫ t

0

φdS +

∫ t

0

ψdB =

∫ t

0

∂C

∂S
dS +

∫ t

0

(
∂C

∂t
+
1

2
σ2S2t

∂2C

∂S2

)

du

=

∫ t

0

dC

= C(t, St)− C(0, S0).
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This confirms the self-financing property. We have now shown that the call option can be replicated

by a self-financing portfolio with initial endowment C(0, S0), so by the argument in section 2.3.3

this is the unique arbitrage-free price.

In the above argument, no special role is played by the call option exercise function [ST −K]+.
It simply provides the boundary condition for the Black-Scholes PDE (2.4). If we used another

boundary condition C(T, S) = h(S) then the corresponding solution of (2.4) would give us the

no-arbitrage value and hedging strategy for a contingent claim with exercise value h(ST ).

Example: the Forward Price. It is easy to check that

• C(t, S) = S satisfies (2.4) with boundary condition C(T, S) = S.

• For a constant K, C(t, S) = e−r(T−t)K satisfies (2.4) with boundary condition C(T, S) = K.

Since (2.4) is a linear equation, the value at time 0 of receiving ST − K at time T is therefore
S0−Ke−rT , which is equal to zero when K = erTS0, the forward price. You can check (please do!)
that the hedging strategy φ = ∂C/∂S implied by Black-Scholes coincides with the strategy given

in section 2.3.1.

2.4.1 Probabilistic solution of the Black-Scholes PDE

Suppose we have an SDE

dxt = m(xt)dt+ g(xt)dwt

where m, g are Lipschitz continuous functions so that a solution exists. The differential generator

of xt is the operator A defined by

Af(x) = m(x)
∂f

∂x
+
1

2
g2(x)

∂2f

∂x2

so the Ito formula can be written

df(xt) = Af(xt)dt+
∂f

∂x
g(xt)dwt.

Now consider the following PDE for a function v(t, x)

∂v

∂t
+Av(t, x)− rv(t, x) = 0, t < T, (2.6)

v(T, x) = Ξ(x), (2.7)

where r is a given constant and Ξ a given function. If v satisfies this then applying the Ito formula

we find that

d(e−rtv(t, xt)) = −re
−rtv(t, xt)dt+ e

−rt

(
∂v

∂t
+Av(t, xt)dt+

∂v

∂x
g(t, xt)dwt

)

= e−rt
∂v

∂x
g(t, xt)dwt. (2.8)

Thus exp(−rt)v(t, xt) is a local martingale. If it is a martingale then integrating from t to T

and using (2.7) we see that

v(t, xt) = Et,x

[
e−r(T−t)Ξ(xT )

]

This is the probabilistic representation of the solution of the PDE (2.6),(2.7).

Comparing (2.4),(2.5) with (2.6),(2.7) we see that these equations match up when m(x) = rx

and g(x) = σx, i.e. xt satisfies

dxt = rxt dt+ σxt dwt. (2.9)
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Now return to the price model (2.1) and introduce a measure change

dQ

dP
= exp

(

αwT −
1

2
α2T

)

,

where α is a constant. By Girsanov, dw̌ = dw − αdt is a Q-Brownian motion, in terms of which
(2.1) becomes

dSt = μSt dt+ σSt(dw̌t + αdt).

Choosing α = (r − μ)/σ we get
dSt = rSt dt+ σStdw̌t, (2.10)

the same equation as (2.9). Equation (2.10) is the price process expressed in the risk-neutral

measure Q, and the above argument shows that the probabilistic solution of the Black-Scholes

PDE (2.4),(2.5) is

C(t, S) = EQt,S

(
e−r(T−t)[ST −K]

+
)
.

This is however easily computed since ST is given explicitly in terms of wT by (2.2) (with r replacing

μ). We get

C(t, S) =
e−r(T−t)
√
2π

∫ ∞

−∞
[S exp((r − σ2/2)(T − t)− σx

√
T − t)−K]+e−x

2/2dx.

A short calculation gives the final expression

C(t, S) = SN(d1)− e
−r(T−t)KN(d2) (2.11)

where N(∙) denotes the cumulative standard normal distribution function and

d1 =
log(S/K) + (r + σ2/2)(T − t)

σ
√
T − t

d2 = d1 − σ
√
T − t

We can now tie up the loose ends of the argument. It can be checked directly that C defined by

(2.11) does satisfy the Black-Scholes PDE (2.4),(2.5), and another short calculation (see Problems

II!) shows that ∂C/∂S = N(d1), so that in particular 0 < ∂C/∂S < 1. Hence the integrand in

(2.8) is square-integrable and the stochastic integral is a martingale, as required.

Another version of the formula, often more useful, is this. Recall that the forward price at t for

delivery at T is F = Ser(T−t). We can therefore express (2.11) as

C(t, S) = e−r(T−t)(FN(d1)−KN(d2)), (2.12)

and d1 can be expressed as

d1 =
log(F/K) + 12σ

2(T − t)

σ
√
T − t

.

2.5 Proof by Martingale Representation

Let φ be an adapted process with ∫ T

0

φ2tS
2
t dt <∞ a.s. (2.13)

and let Xt be a process defined by

dXt = φt dSt + (Xt − φtSt)r dt, X0 = x0. (2.14)
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The interpretation is that Xt is the portfolio value corresponding to the trading strategy (φ, ψ, x0)

where

ψt =
Xt − φtSt
B(t)

, (2.15)

i.e. φt units of the risky asset are held and the remaining value Xt − φtSt is held in the savings
account. This strategy is always self-financing since Xt is by definition the gains from trade process,

while the value is φS + ψB = X. Applying the Ito formula we find that, with X̃t = e
−rtXt,

dX̃t = φe−rtS((μ− r) dt+ σ dw) (2.16)

= φS̃σdw̌, (2.17)

where S̃t = e−rtSt. (The first line (2.16) shows incidentally that (2.14) has a unique solution.)

Thus e−rtXt is a local martingale in the risk-neutral measure Q.

Suppose we have an option whose exercise value at time T is H, where H is an FT -measurable
random variable with EH2 <∞. By the martingale representation theorem there is an integrand
g such that

e−rTH = EQ[e
−rTH] +

∫ T

0

gt dw̌t.

Define φt = e
rtgt/(σSt) and then ψ by (2.15) and x0 = EQ[e

−rTH]. Then φS̃σ = g and the trading

strategy (φ, ψ, x0) generates a portfolio value process such that XT = H a.s., i.e. (φ, ψ, x0) is a

replicating portfolio for H. It follows that the option value is

x0 = EQ[e
−rTH].

Note this is a much more general result than that obtained by the previous argument, in that the

option payoff can be an arbitrary, possibly ‘path-dependent’, random variable, whereas before we

assumed it took a value of the form H = h(ST ). On the other hand the above argument only

asserts that a replicating portfolio exists: it does not give an explicit formula for φ.

Theorem 2.1. Let Φ be the class of investment strategies φt such that (a) the integrability condition

(2.13) is satisfied, and (b) there exists a positive constant Aφ such that Xt ≥ −Aφ for all t ∈ [0, T ],
where Xt is the process defined by (2.14). In the Black-Scholes model, no strategy φ ∈ Φ is an

arbitrage opportunity.

Proof: Suppose Xt is given by (2.14) for some strategy φ ∈ Φ and X0 = 0. Then, from (2.17),
the discounted process X̃t is a Q-local martingale which is bounded below by the constant −Aφ.
Thus X̃t +Aφ is a non-negative local martingale, and hence a supermartingale. Therefore X̃t is a

supermartingale and has decreasing expectation: for any t > 0

0 = EQ[X̃0] ≥ EQ[X̃t]. (2.18)

On the other hand, if Xt ≥ 0 a.s.(P ) and P [Xt > 0] > 0 then, since P and Q are equivalent
measures, EQ[X̃t] > 0, which is incompatible with (2.18). Hence there cannot be an arbitrage

opportunity as defined in Section 2.3. ♦

2.6 Robustness of Black-Scholes Hedging

If we assume the Black-Scholes price model (2.1) then the price at time t of an option with exercise

value h(ST ) is Ch(St, r, σ, t) = C(t, St) where C(t, S) satisfies the Black-Scholes PDE (2.4) with

boundary condition C(T, S) = h(S).
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Suppose we sell an option at implied volatility σ̂, i.e. we receive at time 0 the premium

Ch(S0, r, σ̂, 0), and we hedge under the assumption that the model (2.1) is correct with σ = σ̂. The

hedging strategy is then ‘delta hedging’: the number of units of the risky asset held at time t is

the so-called option ‘delta’ ∂C/∂S:

φt =
∂C

∂S
(t, St). (2.19)

Suppose now that the model (2.1) is not correct, but the ‘true’ price model is

dSt = α(t, ω)Stdt+ β(t, ω)Stdwt, (2.20)

where wt is an Ft-Brownian motion for some filtration Ft (not necessarily the natural filtration
of wt) and αt, βt are Ft-adapted, say bounded, processes. It is no loss of generality to write the
drift and diffusion in (2.20) as αS, βS: since St > 0 a.s. we could always write a general diffusion

coefficient γ as γt = (γt/St)St ≡ αtSt. In fact the model (2.20) is saying little more than that St
is a positive process with continuous sample paths.

Using strategy (2.19) the value Xt of the hedging portfolio is given by X0 = C(0, S0) and

dXt =
∂C

∂S
dSt +

(

Xt −
∂C

∂S
St

)

r dt

where St satisfies (2.20). By the Ito formula, Yt ≡ C(t, St) satisfies

dYt =
∂C

∂S
dS +

(
∂C

∂t
+
1

2
β2S2t

∂2C

∂S2

)

dt.

Thus the hedging error Zt ≡ Xt − Yt satisfies

d

dt
Zt = rXt − rSt

∂C

∂S
−
∂C

∂t
−
1

2
β2S2t

∂2C

∂S2
.

Using (2.4) and denoting Γt = Γ (t, St) = ∂
2C(t, St)/∂s

2, we find that

d

dt
Zt = rZt +

1

2
S2t Γ

2
t (σ̂

2 − β2t ).

Since Z0 = 0, the final hedging error is

ZT = XT − h(ST ) =
∫ T

0

er(T−s)
1

2
S2t Γ

2
t (σ̂

2 − β2t )dt.

Comments:

This is a key formula, as it shows that successful hedging is quite possible even under significant

model error. It is hard to imagine that the derivatives industry could exist at all without some

result of this kind. Notice that:

• Successful hedging depends entirely on the relationship between the Black-Scholes implied
volatility σ̂ and the true ‘local volatility’ βt. For example, if we are lucky and σ̂

2 ≥ β2t a.s. for

all t then the hedging strategy (2.19) makes a profit with probability one even though the true

price model is substantially different from the assumed model (2.1), as long as Γt ≥ 0, which
holds for standard puts and calls.

• The hedging error also depends on the option convexity Γ . If Γ is small then hedging error is
small even if the volatility has been underestimated.
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2.7 Options on Dividend-paying Assets

Holders of ordinary shares receive dividends, which are cash payments normally quoted as “x pence

per share”, paid on specific dates with the value x being announced some time in advance. For

a stock index, where the constituent stocks are all paying different dividends at different times,

it makes sense to think in terms of a dividend yield, the dividend per unit time expressed as a

fraction of the index value. In mathematical terms, we assume that a dividend is a continuous-time

payment stream, the dividend paid in a time interval dt being qStdt. Thus q is the dividend yield.

In this section we analyse the case where q is a fixed constant. Equation (2.14), describing the

evolution of a self-financing portfolio, must be modified to

dXt = φt dSt + qφtStdt+ (Xt − φtSt)r dt, X0 = x0. (2.21)

= φtSt(μ+ q − r)dt+Xtr dt+ φtStσdwt, (2.22)

so that

d
(
e−rtXt

)
= φS̃(μ+ q − r)dt+ φS̃σ dw. (2.23)

Now change to a martingale measure Qq such that

dwq = dw +
μ+ q − r

σ
dt

is a Qq-Brownian motion. Then (2.23) becomes simply

d
(
e−rtXt

)
= φS̃σ dwq.

Thus by the argument of the previous section, the price at time 0 of a contingent claim H is

p = EQq
[
e−rTH

]
. (2.24)

In particular, take H = ST . Then p is the no-arbitrage price now for delivery of 1 unit of the asset

at time T , or, equivalently, erT p is the forward price.

In (2.21), take X − φS = 0, so that all receipts are re-invested in the risky asset S, nothing
being held in the bank account. Then φ = X/S, so that

dX =
X

S
dS + q

X

S
S dt

= X(μdt+ σ dw) + qX dt

= X((μ+ q)dt+ σ dw). (2.25)

On the other hand, if we define Ŝt = e
qtSt and use (2.1) and the Ito formula, we find that

dŜt = Ŝt((μ+ q)dt+ σ dw). (2.26)

From (2.25) and (2.26) we see that Xt = Ŝt = eqtSt for all t > 0 if X0 = S0. Now the solution of

(2.25) is linear in the initial condition, so if X0 = e−qTS0 then XT = ST a.s. We have shown the

following.

Proposition 2.2. (i) For an asset with a constant dividend yield q, the forward price at time T is

FT = e(r−q)TS0. The replicating strategy that delivers one unit of the asset at time T consists of

buying e−qT units of the asset at time 0 and reinvesting all dividends in the asset.

(ii) The value of a call option on the asset with exercise time T and strike K is

C(S0,K, r, q, σ, T ) = e
−rT (FTN(d1)−KN(d2)), (2.27)

where

d1 =
log(FT /K) + σ

2T/2

σ
√
T

, d2 = d1 − σ
√
T .
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Proof: Only part (ii) remains to be proved. Under measure Qq, St satisfies

dSt = (r − q)Stdt+ σStdw
q
t , (2.28)

and the option value is given by (2.24) with H = [ST −K]+. This is exactly the same calculation
as standard Black-Scholes, but with (r− q) replacing r in the price equation (2.28) (but not in the
‘discount factor’ e−rT in (2.24)). Formula (2.27) follows from (2.12). ♦

2.8 Barrier Options

Let St be a price process and let Mt = max0≤u≤t Su be the maximum price to date. An up-and-out

call option has exercise value

[ST −K]
+1MT<B .

It pays the standard call payoff if St < B for all t ∈ [0, T ] and zero otherwise. B is the ‘barrier’,
and to make sense, we must have S0 < B,K < B. An up-and-in call option pays

[ST −K]
+1MT≥B .

The sum of these two payoffs is an ordinary call, so we only need to value one of the above. There

are analogous definitions for down-and-out and down-and-in options.

Remarkably, there are analytic formulas for the values of these options in the Black-Scholes

world. These formulas – but not the proofs – can be found on pages 462-464 of Hull’s book [5]

The starting point is the so-called reflection principle for Brownian motion. Let xt be standard

Brownian motion starting at zero and mt = maxs≤t xs. The reflection principle states that for

y > 0 and x ≤ y,

P [mt ≥ y, xt < x] = N

(
x− 2y
√
t

)

. (2.29)

The idea is that those paths that do hit level y before time t ‘restart’ from level y with symmetric

distribution (see figure 2.1), so there is equal probability that they will be below x = y − (y − x)
or above y + (y − x) = 2y − x at time t. But

P [mt ≥ y, xt ≥ 2y − x] = P [xt ≥ 2y − x]

= 1−N

(
2y − x
√
t

)

= N

(
x− 2y
√
t

)

Now [xt < x] = [mt < y, xt < x] ∪ [mt ≥ y, xt < x], so

N

(
x
√
t

)

= P [xt < x] = P [mt < y, xt < x] + P [mt ≥ y, xt < x]. (2.30)

We have shown the following.

Proposition 2.3. The joint distribution of xt, the Brownian motion at time t, and its maximum-

to-date mt is given by

F0(y, x) = P [mt < y, xt < x] = N

(
x
√
t

)

−N

(
x− 2y
√
t

)

(2.31)
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Fig. 2.1. Reflection principle

This argument depends on symmetry and doesn’t work if xt has drift. We can use the Girsanov

theorem to get the answer in this case. If Pν denotes the probability measure of BM with drift ν

(i.e. xt = νt+ wt where wt is ordinary BM) then we know that on the interval [0, T ]

dPν

dP0
= exp(νxT −

1

2
ν2T ).

Thus if f is any integrable function then, using (2.31),

Eν [1mT<yf(xT )] = E0

[

1mT<yf(xT )
dPν

dP0

]

= E0

[

1mT<yf(xT ) exp

(

νxT −
1

2
ν2T

)]

=

∫ y

−∞
f(x)e(νx−ν

2T/2) 1√
T

(
φ(x/

√
T )− φ((x− 2y)/

√
T )
)
dx,

where φ(x) = e−x
2/2/
√
2π is the standard normal density function. Now clearly

1
√
2πT

exp

(

−
1

2T
x2 + νx−

1

2
ν2T

)

=
1
√
T
φ

(
x− νT
√
T

)

while after some calculation we find that

1
√
2πT

exp

(

−
1

2T
(x− 2y)2 + νx−

1

2
ν2T

)

=
e2yν
√
T
φ

(
x− 2y − νT
√
T

)

.

This gives us the final result: the joint distribution function with drift ν is

Fν(y, x) = Pν [mT < y, xT < x] =

(

N

(
x− νT
√
T

)

− e2yνN

(
x− 2y − νT
√
T

))

. (2.32)

This does coincide with F0 when ν = 0. A good reference for the above argument is Harrison [3].

Let us now return to barrier option pricing. The price process in the risk-neutral measure is

ST = S0 exp((r − σ
2/2)T + σwT )

which we can write as

ST = S0e
σxT

where xT = wT + νT with
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ν =
1

σ

(

r −
1

2
σ2
)

.

The price ST is in the money but below the barrier level when xT ∈ (a1, a2) where

a1 =
1

σ
log

(
K

S0

)

, a2 =
1

σ
log

(
B

S0

)

.

Denoting g(y, x) = ∂Fν(y, x)/∂x, the option value can now be expressed as

Eν
[
e−rT [ST −K]

+1MT<B
]
= e−rT

∫ a2

a1

(S0e
σx −K)g(y, x)dx.

Doing the calculations we obtain the option value given in [5] as a sum of four terms of the form

c1N(c2), as in the Black-Scholes formula. The up-and-out option price is

S0

(

N(d1)−N(x1) +

(
B

S0

)2λ
(N(−y)−N(−y1))

)

+Ke−rT

(

−N(d2) +N(x1 − σ
√
T )−

(
B

S0

)2λ−2
(N(−y + σ

√
T )−N(−y1 + σ

√
T )

)

where d1, d2 are the usual coefficients and

x1 =
log(S0/B)

σ
√
T

+ λσ
√
T

y1 =
log(B/S0)

σ
√
T

+ λσ
√
T

y =
log(B2/(S0K))

σ
√
T

+ λσ
√
T

λ =
r + σ2/2

σ2

Figures 2.2,2.3,2.4 show the value, delta and gamma of an up-and-out call option with strike

K = 100, barrier level B = 120 and volatility 25%. The option matures at time T = 1. One can

clearly see the “black hole” of barrier options: the region where the time-to-go is short and the

priced is close to the barrier. In this region there is high negative delta, and there comes a point

where hedging is essentially impossible because of the large gamma (i.e. unrealistically frequent

rehedging is called for by the theory.)
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3

Multi-Asset Options

This chapter covers pricing of options where the exercise value depends on more than one risky

asset. Section 3.1 describes a very useful formula for pricing exchange options, while Section 3.2

gives a model for the FX market, where the option could be directly an FX option or an option

on an asset denominated in a foreign currency. Finally, in Section 3.3 we introduce the ideas of

numéraire assets and changes of numéraire. These ideas give extra insight into the exchange option

(and simpler calculations) and play a big role in interest rate theory.

3.1 The Margrabe Formula

This is an expression, originally derived by Margrabe [6], for the value

C(t0, s1, s2) = E[e
−r(T−t0)max(S1(T )− S2(T ), 0)] (3.1)

of the option to exchange asset 2 for asset 1 at time T . It is assumed that under the risk-neutral

measure P , S1(t) and S2(t) satisfy

dS1(t) = rS1(t)dt+ σ1S1(t)dw1, S1(t0) = s1 (3.2)

dS2(t) = rS2(t)dt+ σ2S2(t)dw2, S2(t0) = s2, (3.3)

where w1, w2 are Brownian motions with E[dw1dw2] = ρdt. The riskless rate is r. The Margrabe

formula is

C(t0, s1, s2) = s1N(d1)− s2N(d2) (3.4)

where N(∙) is the normal distribution function,

d1 =
ln(s1/s2) +

1
2σ
2(T − t0)

σ
√
T − t0

(3.5)

d2 = d1 − σ
√
T − t0 (3.6)

σ =
√
σ21 + σ

2
2 − 2ρσ1σ2 (3.7)

The following important facts can be noted right away.

1. The solutions of (3.2), (3.3) are

Si(t) = sie
r(t−t0)Mi(t0, t), i = 1, 2, (3.8)

where

Mi(t0, t) = exp

(

σi(wi(t)− wi(t0))−
1

2
σ2i (t− t0)

)

, i = 1, 2. (3.9)

The process t 7→Mi(t0, t) is a martingale, and Mi(t0, t0) = 1, so in particular EMi(t0, t) = 1.
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2. The function C defined by (3.1) does not depend on the riskless rate r.

Indeed, from (3.8) we see that er(T−t0) is a factor of S1(T ) and S2(T ), and this cancels the

discount factor e−r(T−t0) in (3.1).

3. The function C is homogeneous of degree 1, i.e. for any λ > 0 we have

C(t0, λs1, λs2) = λC(t0, s1, s2). (3.10)

This is evident from the definition of the exercise value in (3.1) and the fact—seen from (3.8)—

that Si(T ) is linear in the initial condition si.

Suppose that the function C is continuously differentiable in s1 and s2. Then differentiating

both sides of (3.10) with respect to λ and setting λ = 1 we obtain the key relationship

s1
∂C

∂s1
+ s2

∂C

∂s2
= C (3.11)

3.1.1 The Probabilistic Method

Since C does not depend on the riskless rate r, we may and shall assume that r = 0. Without loss

of generality, we also take t0 = 0. Then

C = E[max(S1(T )− S2(T ), 0)]

= E

[

S2(T )max

(
S1(T )

S2(T )
− 1, 0

)]

(3.12)

By the Ito formula, Y (t) = S1(t)/S2(t) satisfies

dY = Y (σ22 − σ1σ2ρ)dt+ Y (σ1dw1 − σ2dw2). (3.13)

Now S2(t) = s2M2(0, t) and we can regard M2(0, T ) as a Girsanov exponential defining a measure

change
dP̃

dP
=M2(T ). (3.14)

Thus from (3.12)

C = s2Ẽ[max(Y (T )− 1, 0)] (3.15)

where Ẽ denotes expectation under measure P̃ . By the Girsanov theorem, under measure P̃ the

process

dw̃2 = dw2 − σ2dt

is a Brownian motion. We can write w1 as w1(t) = ρw2(t)+
√
1− ρ2w′(t) where w′(t) is a Brownian

motion independent of w2(t) (under measure P ). It is shown below in Lemma 3.1 that w
′ remains

a Brownian motion under P̃ , independent of w̃2. Hence dw̃1 defined by

dw̃1 = ρdw̃2(t) +
√
1− ρ2dw′(t)

= dw1(t)− ρσ2dt

is a P̃ -Brownian motion. Using (3.13), we find that the equation for Y under P̃ is

dY = Y (σ1dw̃1 − σ2dw̃2)

which we can write

dY = Y σdw, (3.16)

where w is a standard Brownian motion and σ is given by (3.7). We will see later in Section 3.3

just why it is that Y is a P̃ -martingale. In view of (3.15), (3.16) the exchange option is equivalent
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to a call option on asset Y with volatility σ, strike 1 and riskless rate 0. By the Black-Scholes

formula, this is (3.4).

Remark: We can recover Black-Scholes from Margrabe simply by taking σ2 = 0 and s2 =

e−r(T−t0)K; then S2(T ) = K a.s.

Lemma 3.1. Suppose Bt, B
′
t are independent Brownian motions on a filtered probability space

(Ω, (Ft)0≤t≤T , P ), and that φt is an adapted process such that
∫ T
0
φ2sds < ∞ and EΛ(T ) = 1,

where

Λ(t) = exp

(∫ t

0

φsdBs −
1

2

∫ t

0

φ2sds

)

.

Define a measure P̃ on (Ω,FT ) by taking dP̃/dP = Λ(T ), and a process B̃ by dB̃t = dBt − φtdt.
Then B̃t, B

′
t are independent Brownian motions under measure P̃ .

Proof. This uses the Girsanov theorem, Theorem 1.12, together with the vector version, Theorem

1.11, of the Lévy characterization theorem. From the Girsanov theorem we know that B̃t is a

P̃ -Brownian motion. Since B,B′ are independent under P we find by applying the Ito product

formula (1.22) that ΛB′ is a P -local martingale and hence B′ is a P̃ -local martingale. Its quadratic

variation is t so by the Lévy characterization B′ is a P̃ -Brownian motion. To complete the proof

we have to show that B̃, B′ are independent under P̃ . Under P , the process B +B′ has quadratic

variation 2t. Since B + B′ and B̃ + B′ differ by a process of bounded variation, this shows that

[B̃ + B′] = 2t. By the same argument, [B̃ − B′] = 2t, and hence [B̃, B′] = 0. We have thus

shown that the vector process Mt = (B̃t, B
′
t) is a P̃ local martingale with cross-variation process

[M ]t = It. Hence B̃t, B
′
t are independent Brownian motions under P̃ , by Theorem 1.11.

3.1.2 Hedging an Exchange Option

Having determined the value of the exchange option, we now want to find the hedging strategy

that replicates its exercise value. Note that there are in principle three traded assets: S1, S2 and

the zero-coupon bond P (t, T ). In fact, the Margrabe hedging strategy only invests in two of them:

S1 and S2. We get some hint of this from the fact that the option value does not depend on r; it

is hard to imagine how this could be the case if hedging were to involve the riskless asset. The key

to this question is the homogeneity property and specifically the property (3.10) of the Margrabe

value C.

Recall that a trading strategy is a triple of processes (α1(t), α2(t), α3(t)) whose values at time t

are the number of units of S1, S2 and P , respectively, held in the hedging portfolio at time t. With

C equal to the Margrabe value (3.4), define

α1(t) =
∂C

∂s1
(t, S1(t), S2(t)), α2(t) =

∂C

∂s2
(t, S1(t), S2(t)), α3(t) = 0. (3.17)

Then (3.10) states that C(t, S1(t), S2(t)) = α1(t)S1(t) + α2(t)S2(t), showing that this strategy

is automatically replicating since in particular C(T, S1(T ), S2(T )) coincides with the Margrabe

exercise value. We only need to show that this strategy is self-financing which, in view of (3.17), is

equivalent to showing that

dC = α1dS1 + α2dS2.

However, applying the Ito formula, we have

dC = α1dS1 + α2dS2 +
∂C

∂t
+
1

2
σ21S

2
1

∂2C

∂s21
+
1

2
σ22S

2
2

∂2C

∂s22
+ ρσ1σ2S1S2

∂2C

∂s1∂s2

so a sufficient condition for the self-financing property is that C satisfies the PDE
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∂C

∂t
+
1

2
σ21s

2
1

∂2C

∂s21
+
1

2
σ22s

2
2

∂2C

∂s22
+ ρσ1σ2s1s2

∂2C

∂s1∂s2
= 0. (3.18)

Taking λ = 1/s2 in (3.10) we have

C(t, s1, s2) = s2f(t, s1/s2) (3.19)

where f(t, y) = C(t, y, 1). We can now calculate derivatives of C in terms of those of f ; for example

C1 =
∂f

∂y
, C2 = f −

s1

s2

∂f

∂y
.

Substituting these expressions into (3.18) we find that (3.18) is equivalent to the following PDE

for f :
∂f

∂t
+
1

2
y2σ2

∂2f

∂y2
= 0, (3.20)

where σ is as defined above. The boundary condition is

f(T, y) = C(T, y, 1) = max(y − 1, 0). (3.21)

But (3.20) (3.21) is just the Black-Scholes PDE whose solution is (3.4). Thus the strategy given

by (3.17) is self-financing and replicates the Margrabe option exercise value.

3.1.3 Exercise Probability

As in Section 3.1.1, define Y (t) = S1(t)/S2(t). We see from (3.12) that exercise takes place when

Y (T ) > 1, and under the risk-neutral measure Y (t) satisfies (3.13). Hence the forward is F =

(s1/s0) exp((σ
2
2 − σ1σ2ρ)T ), and by standard calculations

Risk-neutral probability of exercise = P [Y (T ) > 1] = N(d̂2),

where

d̂2 =
ln(F )− 12σ

2T

σ
√
T

=
ln(s1/s2) +

1
2 (σ

2
2 − σ

2
1)T

σ
√
T

.

Note that the exercise probability is not N(d2), which is the exercise probability under the trans-

formed measure P̃ .

3.1.4 Margrabe with dividends

If the assets S1, S2 pay constant dividend yields q1, q2 respectively, then the Margrabe formula

becomes

C = s1e
−q1(T−t0)N(d1)− s2e

−q2(T−t0)N(d2),

where d1, d2 are given as before by (3.5), (3.6).

We leave it to the reader to derive this result, using the approach of Section 2.7.
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3.1.5 Black-Scholes as a special case

Finally, let us see how we recover Black-Scholes as a special case. Indeed, if we set σ2 = 0 and

s2 = Ke
−r(T−t0) then S2(T ) = K a.s. and the option exercise value is value of a call option on S1

with strike K. Thus if D(t0, s) denotes the value of this option then D(t0, s) = C(t0, s, e
−r(T−t0)K).

The PDE (3.18) reduces to
∂C

∂t
+
1

2
σ21s

2
1

∂2C

∂s21
= 0. (3.22)

Now
∂2D

∂s2
(t, s) =

∂2C

∂s21
(t, s, e−r(T−t0)K)

and
∂D

∂t
=
∂C

∂t
+
∂C

∂s2
re−r(T−t)K =

∂C

∂t
+ r

(

C − s
∂C

∂s1

)

,

where the second equality uses (3.10). Substituting in (3.22), we find that D satisfies

∂D

∂t
+ rs

∂D

∂s
+
1

2
σ21s

2 ∂
2D

∂s2
− rD = 0,

the standard Black-Scholes PDE.

3.2 Cross-Currency Options

This section concerns valuation of an option on an asset St denominated in currency F (for “for-

eign”) which pays off in currency D (for “domestic”). We denote by ft the exchange rate at time

t, interpreted as the domestic currency price of one unit of foreign currency. Thus the currency

D value of the asset St is ftSt at time t. In this note we ignore interest-rate volatility and take

the foreign and domestic interest rates as constants rF , rD respectively, so that the corresponding

zero-coupon bonds have values

PF (t, T ) = e
−rF (T−t)

PD(t, T ) = e
−rD(T−t).

3.2.1 Forward FX rates

To deliver one unit of currency F at time T , we can borrow f0PF (0, T ) units of domestic currency at

time 0 and buy a foreign zero-coupon bond maturing at time T . At that time the value of our short

position in domestic currency is −f0PF (0, T )/PD(0, T ). By standard arguments, an agreement to
exchange K units of domestic currency for one unit of currency F at time T is arbitrage-free if and

only if K = f0PF (0, T )/PD(0, T ). In summary:

Forward price = f0e
(rD−rF )T .

This coincides with the formula for the forward price of a domestic asset with dividend yield rF .

3.2.2 The domestic risk-neutral measure

The traded assets in the domestic economy are the domestic zero-coupon bond, value Zt = PD(t, T ),

the foreign zero-coupon bond, value Yt = ftPF (t, T ), and the foreign asset, value Xt = ftSt. An

analogous set of assets is traded in the foreign economy. It is important to realize that there are

two risk-neutral measures, depending on which economy we regard as “home”.
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We will assume that in the domestic risk-neutral (DRN) measure the asset St is log-normal,

i.e. satisfies

dSt = Stμdt+ StσSdw
S(t) (3.23)

for some drift μ and volatility σS . The asset is assumed to have a dividend yield q. Similarly the

FX rate ft is log-normal:

dft = ftγdt+ ftσfdw
f (t), (3.24)

with drift γ and volatility σf . w
S and wf are Brownian motions with EdwSdwf = ρ dt.

The discounted domestic value of the foreign zero-coupon bond is

e−rDtftPF (t, T ) = e
−rFT fte

−(rD−rF )t.

This is a martingale in the DRN measure, which is true if and only if

γ = rD − rF . (3.25)

Now consider a self-financing portfolio of foreign assets in which we hold φt units of asset St and

keep the remaining value in foreign zero-coupon bonds. The portfolio value process Vt then satisfies

dVt = φtdSt + qφtStdt+ (Vt − φtSt)rF dt.

= VtrF dt+ φtSt(μ+ q − rF )dt+ φtStσSdw
S
t .

Using (3.24),(3.25) and the Ito formula we find that the domestic value Ut = ftVt of this portfolio

satisfies

dUt = rDUtdt+ σfUtdw
f
t + φtftStσSdw

S
t + φtftSt(μ+ q − rF + ρσSσf )dt.

Again, the discounted value e−rDtUt is a martingale in the DRN measure, and this holds if and

only if

μ = rF − q − ρσSσf . (3.26)

In summary, under the DRN measure the FX rate and asset value satisfy the following equations

dft = ft(rD − rF )dt+ ftσfdw
f (t) (3.27)

dSt = St(rF − q − ρσSσf )dt+ StσSdw
S(t) (3.28)

By applying the Ito formula to (3.27),(3.28) we find that Xt := Stft, the asset price expressed in

domestic currency, satisfies

dXt = Xt(rD − q)dt+Xt(σSdw
S(t) + σfdw

f (t)). (3.29)

By computing variances we find that

σSw
S(t) + σfw

f (t) = σ̃w(t), (3.30)

where w(t) is a standard Brownian motion and

σ̃ =
√
σ2S + σ

2
f + 2ρσSσf (3.31)

E[dwdwf ] =
1

σ̃
(σf + ρσS). (3.32)

Thus (3.29) becomes

dXt = Xt(rD − q)dt+Xtσ̃dw(t). (3.33)
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3.2.3 Option Valuation

Options on Foreign Assets

This refers to, for example, a call option with value at maturity time T

max[XT −K, 0],

i.e. the foreign asset value is converted to domestic currency at the spot FX rate fT and compared

to a domestically-quoted strike K. Since Xt satisfies (3.33) we see that the option value is just the

Black-Scholes value for a domestic asset with volatility σ̃ given by (3.32).1

Currency-Protected (Quanto) Options

Here the option value at maturity is A0max[ST −K, 0] units of domestic currency, where A0 is an
arbitrary exchange factor, for example the time-zero exchange rate. The option value at time zero

is

A0e
−rDTE(max[ST −K, 0]).

The expectation is taken under the DRN measure, in which St satisfies (3.28). Note that the

volatility is σS and the drift is rF − q − ρσSσf = rD − (q + rD − rF + ρσSσf ). We can therefore
calculate the option value in two equivalent ways:

(i) Use the “forward” form of the BS formula with forward FT = S0 exp((rF − q − ρσSσf )T ) and
discount factor exp(−rDT ).

(ii) Use the “stock” form of BS with riskless rate rD and dividend yield q + rD − rF + ρσSσf .

3.2.4 Hedging Quanto Options

Deriving the Hedge

The value of the quanto option given above has the usual interpretation as the initial endowment

of a perfect hedging portfolio, but the formula does not indicate how the hedging takes place.

To discover this, we re-derive the formula using the traditional Black-Scholes perfect hedging

argument. For this we use the “objective” probability measure - not the risk-neutral measure -

under which Xt = Stft and ft are log-normal processes satisfying

dXt = λXtdt+ σ̃Xtdw̃(t) (3.34)

dft = υftdt+ σfftdw
f (t) (3.35)

for some drift coefficients λ, υ the value of which, it turns out, we do not need to know. The point

about the hedging argument is that from the perspective of a domestic investor, St itself is not

a traded asset: the traded assets are Xt (the domestic value of St) and the foreign and domestic

bonds Yt, Zt. From (3.35), the equation satisfied by Yt is

dYt = (υ + rF )Ytdt+ σfYtdw
f . (3.36)

We know from section 3.2.3 that the quanto call option value at time t is a function C(t, St) =

C(t,Xt/ft) but we need to regard it as a function of Xt, ft separately for hedging purposes. Note

that if we define g(t, x, f) := C(t, x/f) then with C ′ = ∂C/∂S we have

1 Note that the sign of ρ would be reversed if we had written the FX model in terms of 1/ft rather than

ft.
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∂g
∂t
= ∂C
∂t

∂g
∂x
= 1
f
C ′ ∂g

∂f
= − x

f2
C ′

∂2g
∂x2
= 1
f2
C ′′ ∂

2g
∂f2
= 2x
f3
C ′ + x2

f4
C ′′ ∂

2g
∂x∂f

= − 1
f2
C ′ − x

f3
C ′′

(3.37)

Let C(t, St) be the call value and consider the portfolio

Vt = C(t,Xt/ft)− φtXt − ψtYt − χtZt, (3.38)

where φt, ψt, χt are the number of units of Xt, Yt, Zt respectively in the putative hedging portfolio.

Recall that S (and hence X) pays dividends at rate q. Applying the Ito formula using (3.37) and

(3.34),(3.35) and then substituting S = X/f we eventually obtain

dVt =

(
∂C

∂t
− SC ′(v + ρσSσf ) +

1

2
σ2SS

2C ′′ − ψ(υ + rF )Yt − χrDZt

)

dt

+(
1

f
C ′ − φ)dX − φqXdt− (ψYt + SC

′)σfdw
f

Taking

φ =
1

f
C ′ (3.39)

ψ = −
1

Y
SC ′ (3.40)

this becomes

dVt =

(
∂C

∂t
+ SC ′(rF − y − ρσSσf ) +

1

2
σ2Ss

2C ′′ − χrDZt

)

dt (3.41)

The usual no-arbitrage argument implies that Vt must grow at the domestic riskless rate, i.e.

dVt = VtrDdt

= (C −
C ′

f
X +

SC ′

Y
Y − χZ)rDdt

= (C − χZ)rDdt (3.42)

and, from (3.41) and (3.42), this equality is satisfied if C satisfies

∂C

∂t
+ SC ′(rF − q − ρσSσf ) +

1

2
σ2SS

2C ′′ − rDC = 0. (3.43)

The boundary condition is

C(T, s) = A0[s−K]
+ (3.44)

If we write

rF − q − ρσSσf = rD − (q + rD − rF + ρσSσf ),

we can see that (3.43),(3.44) is just A0 times the Black-Scholes PDE with volatility σS , riskless

rate rD and dividend yield (q + rD − rF + ρσSσf ). This agrees with the valuation obtained in
Section 3.2.3.

We still have to check the two key properties of the hedging portfolio, namely perfect replication

and self-financing. The former is obtained by suitably defining χt; from (3.42), Vt ≡ 0 if

χt =
C(t, St)

Zt
. (3.45)

To check the latter, note that the hedging portfolio value is W = φX+ψY +χZ and we now know

that this is equal to the option value C(t, St). Hence
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dW = dC

=

(
∂C

∂t
+
1

2
σ2SS

2C ′′
)

dt+ C ′dS

= rDCdt− SC
′(rF − q − ρσSσf )dt+ C

′dS. (3.46)

(The second line is just an application of the Ito formula and the third uses the Black-Scholes PDE

(3.43).) Now S = X/f , so using (3.34), (3.35) we get from the Ito formula

dS =
1

f
dX − S

df

f
− ρσfσSSdt.

Thus

dW = rDCdt− SC
′(rF − q − ρσSσf )dt+

C ′

f
dX −

C ′S

f
df − ρσSσfC

′Sdt

= rDCdt− SC
′

(

rF dt+
df

f

)

+ qSC ′dt+
C ′

f
dX (3.47)

Using the definitions of φ, ψ and χ at (3.39),(3.40),(3.45) we see that the first, third and fourth

terms of (3.47) are equal to χdZ, φqXdt and φdX respectively. Now Yt = e
−rF (T−t)ft, so

dYt = rFYtdt+ e
−rD(T−t)dft

= rFYtdt+ Yt
df

f
,

showing that the second term in (3.47) is equal to ψdY . Thus (3.47) is equivalent to

dW = φdX + qφXdt+ ψdY + χdZ,

which is the self-financing property.

Interpretation of the Hedging Strategy

Recall that the hedging portfolio is

φX + ψY + χZ

where

φ =
1

f
C ′

ψ = −
SC ′

Y

χ =
C

Z

The net value of the first two terms is zero, and this is what eliminates the FX exposure: φ

represents a conventional delta-hedge in Currency F, financed by Currency F borrowing (this is

ψ). All increments in the hedge value are immediately “repatriated” and deposited in the home

currency riskless bond Z. The value in this domestic account is χZ = C so that, in particular, the

value at the exercise time T is (for a call option) A0[ST −K]+, the exercise value of the option.

3.3 Numéraire pairs and change of numéraire

There is a more sophisticated way of looking at the Magrabe formula, which provides extra insight.

The technique involved—change of numéraire—is needed later anyway: it plays an essential role

in modelling of interest rate derivatives.
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Recall from section 3.1.2 that in the Margrabe problem the traded assets are S1, S2 and the

zero-coupon bond p(t, T ). A self-financing portfolio can be constructed by specifying a 2-vector

process αt with the interpretation that α
i
t is the number of units of asset Si held at time t, i = 1, 2.

The remaining wealth is held in the zero coupon bond. The evolution of the portfolio value Xt is

then

dXt = α
1
tdS1(t) + α

2
tdS2(t) +

Xt − α1tS1(t)− α
2
tS2(t)

p(t, T )
dp(t, T ).

Bearing in mind that dp/p = r dt, we find that in discounted units S̃i(t) = e−rtSi(t), i = 1, 2 and

X̃t = e
−rtXt, this portfolio equation becomes

dX̃t = α
1
tdS̃1(t) + α

2
tdS̃2(t).

Under the risk-neutral measure P , the discounted prices S̃i are martingales, and hence X̃t is a

P (local) martingale, for any trading strategy α. Now define B(t) = ert. This is the portfolio

value corresponding to the strategy α1 = α2 ≡ 0, α3t = 1/p(0, T ) (with initial investment 1, buy
1/p(0, T ) units of zero-coupon bond at time 0 and hold until time T ). Then we can write the

discounted prices as S̃i(t) = Si(t)/B(t), X̃t = Xt/B(t), i.e. the discounted prices are the prices

expressed in units of the numéraire asset B(t). The measure P is the unique measure such that

these price ratios are all local martingales.

In fact, using B(t) as numéraire asset is an arbitrary choice. Rather than describing P as the

risk-neutral measure, one should say that (B,P ) is a ‘numéraire pair’. In the next section we

describe this idea in a somewhat more general setting. We will return to Margrabe in section 3.3.3

below.

3.3.1 Numéraire pairs

Let (Ω, (Ft)0≤t≤T , P ) be a stochastic basis and (S0(t), . . . , Sn(t)) be Ft-adapted continuous semi-
martingales. We assume that S0(t) > 0 for all t ∈ [0, T ] a.s. and (normalizing if necessary) that
S0(0) = 1. These are the prices of n + 1 traded assets. A trading strategy is an n-vector process

αt = (α
1
t , . . . , α

n
t ), where each component α

i
t is an adapted process such that

∫ T
0
αitd[Si]t <∞ a.s.

αit is the number of units of asset i in the portfolio at time t. We will call Xt a portfolio process if

Xt is the value at time t of the portfolio corresponding to some trading strategy. Xt satisfies the

following equation.

dXt = αtdS(t) +
Xt − αtS(t)

S0(t)
dS0(t). (3.48)

(Here αS denotes the vector inner product. The value of the holdings in assets 1 to n is αtSt and

the residual value Xt−αtS(t) buys (Xt−αtS(t))/S0(t) units of asset 0.) We call S0 the numéraire
asset. A numéraire pair is a pair (S0, Q) where Q is a probability measure, equivalent to P , such

that the process Xt/S0(t) is a local martingale for all portfolio processes Xt.

Proposition 1 Let (S0, Q) be a numéraire pair and let Xt be the value of the self-financing port-

folio corresponding to a trading strategy α = (α1, . . . , αn). Then the value X̃t = Xt/S0(t) (i.e., the

value expressed in units of S0) is given by

dX̃t =

n∑

i=1

αitdS̃i(t), X̃0 = X0, (3.49)

where S̃i = Si/S0. Hence X̃t is a Q-local martingale.

Proof. Using the Ito formula for continuous semimartingales, we have
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d

(
1

S0

)

= −
1

S20
dS0 +

1

S30
d[S0]. (3.50)

Now, using (3.48), (3.50) and the product formula d(XY ) = XdY +Y dX+d[X,Y ] with Y = 1/S0,

we obtain

d

(
Xt

S0(t)

)

=

n∑

i=1

αi

(
1

S0
dSi −

Si

S20
dS0 −

1

S20
d[Si, S0] +

Si

S30
d[S0]

)

. (3.51)

If we set αk = 1 and αi = 0, i 6= k then Xt = Sk(t) and we see that the kth term on the right of

(3.51) is equal to αkd(Sk/S0). The result follows. ♦

Proposition 2 Suppose the n-vector process S̃t = (S̃
1
t , . . . , S̃

n
t ) has the martingale representation

property: for any FT measurable random variable Y there is an n-vector integrand φ such that

Y = EQ[Y ] +

∫ T

0

φtdS̃t. (3.52)

Then the unique arbitrage-free value of a contingent claim whose exercise value is H is

v0 = EQ

[
H

S0(T )

]

. (3.53)

More generally, the value of the claim at any time t ∈ [0, T ] is

vt = S0(t)EQ

[
H

S0(T )

∣
∣
∣
∣Ft

]

.

Proof. In (3.52), take Y = H/S0(T ) and interpret (3.52) as defining a trading strategy which

replicated the exercise value H. The unique arbitrage-free value of the claim is then the initial

endowment of the replicating strategy, which is equal to EQ[Y ]. The second part follows from the

fact that ṽt = vt/S0(t) is a Q-martingale. ♦

3.3.2 Change of numéraire

Proposition 3 Let (N1, Q1) be a numéraire pair and let N2 be a second numéraire. Suppose that

EQ1

[
N2(T )

N1(T )

]

= 1. (3.54)

Then (N2, Q2) is a numéraire pair, where Q2 is defined by

dQ2

dQ1
=
N2(T )

N1(T )
. (3.55)

Proof. Since (N1, Q1) is a numéraire pair, and using condition (3.54), Λt ≡ N2(t)/N1(t) is a Q1
martingale. Now a process Yt is a Q2 local martingale if and only if YtΛt is a Q1 local martingale.

Taking Yt = Xt/N2(t) for an arbitrary portfolio process Xt we have YtΛt = Xt/N1(t) which is

indeed a Q1 local martingale, so Xt/N2(t) is a Q2 local martingale. Hence (N2, Q2) is a numéraire

pair. ♦
This result shows that once we have obtained a martingale measure Q1 corresponding to some

particular numéraire N1, we can switch at will to essentially any other numéraire N2, for which a

martingale measure will be given by the formula (3.55). Which numéraire we should use in a par-

ticular case is purely a matter of convenience. The exchange option problem is a good illustration.
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3.3.3 Margrabe revisited

The exercise value of the Margrabe exchange option is H = [S1(T )−S2(T )]+. Let us take N2(t) =
S2(t)/s2 as numéraire and denote by Q2 the corresponding martingale measure (so that (N,Q2)

is a numéraire pair). Then from (3.53) the Margrabe value is

v0 = EQ2

[
s2

S2(T )
[S1(T )− S2(T )]

+

]

= s2EQ2 [YT − 1]
+,

where Yt = S1(t)/S2(t) = s2S1(t)/Nt. By the definition of numéraire pair we know that Yt is a Q2-

local martingale, so Q2 must be a measure under which Yt has zero drift. But then we immediately

obtain

dY = Y σdw,

where σ is given by (3.7) and w is a Q2-Brownian motion. (To identify σ, it is only necessary

to compute the quadratic variation of Y , which is the same under all equivalent measures. The

calculations in Section 3.1.1 show what this is.) We have thus recovered the result of Section 3.1.1,

namely that v0 is s2 times the value of a call option on Y with strike 1.

The martingale measure Q2 in this section is the same as the measure P̃ of Section 3.1.1.

We introduced it there as a computational device and it was not at all clear why Yt turned

out to be a P̃ martingale. Now we know why. In 3.1.1, P is the measure corresponding to the

numéraire N1(t) = ert. The reader can check that the Girsanov exponential (3.14) coincides with

the numéraire change formula (3.55).
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Fixed Income

4.1 Bonds: the basics

4.1.1 The price/yield relationship

A bondholder receives interest payments or coupons on fixed dates at regular intervals (say, every

6 months) and at the final maturity date receives the final coupon plus the par value, which we

will normalize as 1.

The coupon payments are specified by a rate (5.5%,..), a frequency (1,2,4: the number of

payments per year) and a basis stating how the accrual or day count is calculated. Typical bases

are actual/actual, actual/365, 30/360.. For example if we have a rate of 5.5% paid semi-annually

(frequency = 2) on an actual/365 basis then the payment dates are 6 months apart and the coupon

payment on a particular payment date is (d/365) ∗ 0.055, where d is the number of days since the
last coupon date. The accrual factor (d/365) is very nearly, but not exactly, equal to 1/2. The first

coupon is paid 6 months after the bond is issued.

For simplicity, consider a bond with frequency 1, coupon c and basis actual/actual (or 30/360),

so that the accrual factor is 1, and maturity n years. If the price at issue is p, the yield is the

number y satisfying p = B(y) where

B(y) =

n∑

i=1

c

(1 + y)i
+

1

(1 + y)n

(Interpretation: all the coupon payments could be financed by depositing at time 0 the amount p

in an account paying annual interest y.) Note the inverse relationship: high yield ⇔ low price. The
(modified) duration of the bond is

D(y) = −
1

B(y)

dB(y)

dy
.

Note that this has units of years. For a zero-coupon bond (c = 0) the duration is n/(1 + y) ≈ n,

whereas a coupon bond has shorter duration: maybe 7 years for a 10-year bond issued at par. The

convexity of the bond is

C(y) =
d2B(y)

dy2
.

To illustrate the effect of convexity, suppose that the yield is a random variable Y with expected

value y0. We define the yield volatility as σ =
√
E(Y − y0)2/y0. Then

B(Y ) = B(y0) +
dB(y0)

dy
(Y − y0) +

1

2

d2B(y0)

dy2
(Y − y0)

2 + ∙ ∙ ∙

so that to second order
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EB(Y ) = B(y0) +
1

2
C(y0)y

2
0σ
2.

Yield volatility increases the expected bond value due to the convexity effect.

4.1.2 Floating rate notes

Suppose an annual interest rate Li is set at the beginning of year i, i = 1, 2, . . ., so that $1 at the

beginning of year i becomes $(1 + Li) at the end of the year. The corresponding discount factor

is 1/(1 + Li). A floating rate note is an n-year bond whose coupon ci paid at the end of year i is

equal to Li. A key fact is the following: at coupon dates, a floating rate note is always at par. You

can think of this as a consequence of the identity

n∑

i=1

Li
∏i
j=1(1 + Lj)

+
1

∏n
j=1(1 + Lj)

= 1.

In general the rate Li is a random variable whose value is not known until the beginning of year

i. We need extra information to be able to value a fixed-coupon bond.

4.2 A general valuation model

All processes are assumed to be Ft-adapted on a filtered probability space (Ω,F , (Ft)t∈[0,T ], P )
where P will be the unique risk-neutral measure. There are traded assets with price processes

Si(t). The holder of asset i receives cumulative dividends Di(t), i.e. the dividend received in the

time interval ]t, t + dt] is dDi(t) = Di(t + dt) −Di(t). There is a savings account paying interest
at continuously-compounde rate r(t), again an adapted random process. A self-financing portfolio

with trading strategy φ (i.e. φi(t) is the number of units of asset i in the portfolio at time t) thus

has wealth process Xt satisfying

dXt =
∑

i

φi(dSi + dDi) +



Xt −
∑

j

φjSj



 r(t) dt. (4.1)

Define

B(t) = exp

(∫ t

0

r(s)ds

)

.

Then

d
(
B−1(t)Xt

)
=
∑

i

B−1φi(dSi − rSidt+ dDi)

=
∑

i

φid(B
−1Si) +

∑

i

φiB
−1dDi). (4.2)

In particular, taking φi(t) ≡ 1 for i = j and φi(t) ≡ 0 otherwise, we obtain

B−1(t)Xt = B
−1(t)Sj(t) +

∫ t

0

B−1(s)dDj(s) =:Mj(t). (4.3)

If P is the risk-netral measure corresponding to the savings account numéraire B(t) then Mj(t) is

a martingale for each j. We then see that (4.2) can be written

d
(
B−1(t)Xt

)
=
∑

i

φi(t)dMi(t). (4.4)
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Thus if Z is an Ft-measurable random variable such that Z = Xt a.s. for some self-financing

strategy φ then – assuming the stochastic integrals in (4.4) are true martingales – the value of Z

at time 0 is

E

[

e
−
∫
t

0
r(u)du

Z

]

,

and more generally the value at some intermediate time s ∈ [0, t] is

E

[

e
−
∫
t

s
r(u)du

Z

∣
∣
∣
∣Fs

]

. (4.5)

The market is complete if, for each t ∈ [0, T ], every contingent claim Z (in some class about which

we will not be too precise) with exercise time t can be replicated, i.e. Z = Xt for some trading

strategy φ.

A special but exceptionally important case is the “contingent claim” Z ≡ 1. Then (4.5) gives
us the time-s value p(s, t) of a zero-coupon (ZC) bond, paying $1 at time t, as

p(s, t) = E

[

e
−
∫
t

s
r(u)du

∣
∣
∣
∣Fs

]

= B(s)E[B−1(t)|Fs] (4.6)

4.3 Interest rate contracts

4.3.1 Libor rates

A zero-coupon (ZC) bond value p(s, t) is equivalent to a simple interest payment for the period

[s, t] of L satisfying

p(s, t) =
1

1 + θstL
,

or equivalently

L =
1

θst

(
1

p(s, t)
− 1

)

, (4.7)

where θst is the accrual factor (in the appropriate basis) for the interval [s, t]. L defined by (4.7)

is the Libor rate. Note that

• L is set at time s (i.e. it is Fs measurable) but paid at time t.
• The value at time s of the Libor payment at time t is

E

[

e
−
∫
t

s
r(u)du

θstL

∣
∣
∣
∣Fs

]

= p(s, t)θstL

= 1− p(s, t)

Because of the latter fact, the accrual factor plays no role in the theory. It is just a conventional

way of specifying what the Libor rate is, while the actual payment depends only on the ZC bond

values.

For t < T1 < T2 the forward bond p
f (t;T1, T2) and forward Libor rate L

f (t;T1, T2) at t for the

period [T1, T2] are

pf (t;T1, T2) =
p(t, T2)

p(t, T1)

and

Lf (t;T1, T2) =
1

θT1T2

(
1

pf (t;T1, T2)
− 1

)

,

=
1

θT1T2

(
p(t, T1)

p(t, T2)
− 1

)
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Suppose that, at time t, I agree to make a Libor payment at time T2 (with rate set at time T1) in

exchange for a payment at a rate K fixed now, at time t; this is a forward rate agreement (FRA).

Fact: the unique arbitrage-free value of the fixed side in a FRA is K = Lf , the forward Libor rate.

Indeed, the corresponding hedging strategy is as follows: at time t,

• borrow a number θT1T2L
f of T2-ZC bonds, value p(t, T2)(p(t, T1)/p(t, T2) − 1) = p(t, T1) −

p(t, T2); the fixed payment θL
f at time T2 exactly redeems these bonds.

• buy one T1-ZC bond and sell one T2-ZC bond.
• at time T1, these bonds have value 1−p(T1, T2), enough to buy a number (1−p(T1, T2))/p(T1, T2)
of T2-ZC bonds. At time T2 these have value (1/p(T1, T2)− 1) = θT1T2L.

4.3.2 Swap rates

An interest rate swap is specified by maturity, frequency, basis, notional amount N and fixed

side rate K. On each coupon date ti one party (the ‘fixed side’) pays NθiK while the other (the

‘floating side’) pays NθLi where Li is the Libor rate set at ti−1. Here θi = θt1t2 . We will take

N = 1 henceforth.

Fictitiously adjoin to the swap equal and opposite payments of 1 at the maturity date. Then

the floating side is equivalent to a floating rate note, with value 1 at time 0, while the fixed side is

equivalent to a coupon bond, with value

n∑

i=1

Kθip(0, ti) + p(0, tn).

The swap rate is the value of K such that the swap has value 0 at time 0. Clearly this value is

K0 =
1− p(0, tn)∑n
i=1 θip(0, ti)

(4.8)

At later times this swap does not generally have value zero because the same fixed-side rate K0 is

maintained throughout. For example the value at tj , to the party paying fixed, is

1−
n∑

i=j+1

K0θip(tj , ti)− p(tj , tn), (4.9)

since the floating side always has value 1. The swap rateKj at tj is, in our model, an Ftj -measurable
random variable. The forward swap rate at tj is, by analogy with (4.8)

Kfj =
1− pf (0; tj , tn)∑n
i=j+1 θip

f (0; tj , ti)

=
p(0, tj)− p(0, tn)∑n
i=j+1 θip(0, ti)

Exercise: Show that K = Kfj is the unique no-arbitrage value of an agreement, made at time 0,

to enter a swap at time tj at fixed rate K.

4.3.3 Interest rate options

The standard interest-rate options are caps, floors and swaptions. A cap pays a cash amount

θi[Li −K]+ at each coupon date i, i = 1 . . . n. In view of (4.7) we have

θi[Li −K]
+ =

[
1

p(ti−1, ti)
− (1 + θiK)

]+
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and the value of this payment at time ti−1 is

p(ti−1, ti)

[
1

p(ti−1, ti)
− (1 + θiK)

]+
= (1 + θiK)[κi − p(ti−1, ti)]+,

where κi = 1/(1+θiK). Thus a cap is equivalent to a series of caplets, each caplet being equivalent

to a put option on the ZC bond. In our model the caplet value is

1

κi
E

(

e
−
∫
ti−1

0
r(s)ds

[κi − p(ti−1, ti)]
+

)

A floor pays θi[K − Li]+.

A swaption is the right to enter a swap at a fixed-side rate K, starting at a time tj in the future.

It is a ‘payer’s swaption’ if the holder will enter the swap paying the fixed side, and a ‘receiver’s

swaption’ otherwise. From (4.9) the value of a payer’s swaption with strike K is

E



e−
∫
tj

0
r(s)ds

[1−
n∑

i=j+1

Kθip(tj , ti)− p(tj , tn)]
+



 .

It is equivalent to a put option on a coupon bond, with coupon K, with strike 1.

4.3.4 Futures

Very briefly, a futures contract maturing at time T on an asset Si is a traded asset with ‘price’ Ft
such that

• The futures contract can be entered at zero cost at any time;
• A holder of the contract receives a payment Ft+dt − Ft in the interval [t, t+ dt].
• At maturity T , FT = Si(T ).

From this description it is clear that the futures ‘price’ is not a price at all. It is a dividend. The

future is an asset Sj with price Sj(t) ≡ 0 and dividend process Dj(t) = Ft. In view of (4.3) we see
that

Mj(t) =

∫ t

0

B−1(s)dFs

is a martingale, so that

Ft =

∫ t

0

B(s)dMj(s)

is a martingale. Since FT = Si(T ), this shows that

Ft = E[Si(T )|Ft], t ≤ T.

Recall that the forward price Gt is the no-arbitrage exchange price for Si(T ) fixed at time t, i.e.

Gt satisfies

E

[

e
−
∫
T

t
r(s)ds

(Gt − Si(T ))

∣
∣
∣
∣Ft

]

= 0.

Hence

Gt =
1

p(t, T )
E

[

e
−
∫
T

t
r(s)ds

Si(T )

∣
∣
∣
∣Ft

]

.

The difference between forward and futures prices is therefore
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Ft −Gt = E[Si(T )|Ft]−
1

p(t, T )
E

[

e
−
∫
T

t
r(s)ds

Si(T )

∣
∣
∣
∣Ft

]

=
1

p(t, T )
E

[

Si(T )(p(t, T )− e
−
∫
T

t
r(s)ds

)

∣
∣
∣
∣Ft

]

=
−1

p(t, T )
covFt

(

Si(T ), e
−
∫
T

t
r(s)ds

)

, (4.10)

where covFt(X,Y ) denotes the conditional covariance of X and Y . In particular, forward and future

are the same if there is no interest-rate volatility.

Exchange-traded futures include the Eurodollar futures contract, whose settlement value at

time T is 100(1− L), where L is the 3-month Libor rate set at T . (The reason for this convention
is to maintain the ‘high rate ⇔ low price’ relationship, as for bonds.) It is important to note
that a futures price of, say, 94.5 does not mean that forward Libor is 5.5%: this figure has to be

adjusted by the ‘convexity correction’ (4.10). Note that when Si in (4.10) is a Libor rate, it is

generally positively correlated with r(s) and therefore negatively correlated with e
−
∫
T

t
r(s)ds

. Thus

the right-hand side of (4.10) is positive, so the futures price is bigger than the forward price.

4.4 Pricing interest-rate options

The standard market convention for pricing plain-vanilla interest-rate options is to use the Black

‘forward’ formula

p(0, T )[FN(d1)−KN(d2)], (4.11)

where d1, d2 are the usual volatility-related factors. This can be applied to caplets, with F as

the forward Libor rate, or to swaps with F as the forward swap rate. There is some apparent

inconsistency with this approach: the whole point is that interest rates in the future are random,

but we treat the discount factor p(0, T ) in (4.11) as deterministic. In this section we show that

something close to this approach is in fact consistent if we re-interpret things in terms of ‘forward

measures’. A good reference for this material is Hunt and Kennedy [4].

4.4.1 The forward measure

In the framework of Section 4.2, the forward price Fi(t, T ) of a traded asset Si is the price agreed

at time t for exchange at time T , i.e. the value of κ such that

E

[

e
−
∫
T

t
r(u)du

(κ− Si(T ))

∣
∣
∣
∣Ft

]

= 0,

or equivalently

κp(t, T ) = E

[

e
−
∫
T

t
r(u)du

Si(T )

∣
∣
∣
∣Ft

]

. (4.12)

Since Mi(t) given by (4.3) is a martingale, we see that

Fi(t, T ) =
1

p(t, T )
Si(t)−

1

p(t, T )
E

[∫ T

t

e
−
∫
s

t
r(u)du

dDi(s)

∣
∣
∣
∣
∣
Ft

]

. (4.13)

The value C(t) at time t of an option on Si, maturing at T with exercise value h(Si(T )) is, as

usual,

C(t) = E

[

e
−
∫
T

t
r(u)du

h(Si(T ))

∣
∣
∣
∣Ft

]

(4.14)
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Definition: The T -forward measure on (Ω,FT ) is the measure PT defined by the Radon-Nikodým
derivative

dPT

dP
=
e
−
∫
T

0
r(u)du

p(0, T )
=

1
p(0,T )

B(T )
. (4.15)

Note that PT is well-defined in that the right hand side of (4.15) is strictly positive and has

expectation 1. We see from (4.15) and the general change-of-numéraire formula that PT is the

risk-neutral measure corresponding to a numéraire N(t) where N(T ) = 1/p(0, T ). Since N(t)/B(t)

is a P -martingale, this implies that N(t) = p(t, T )/p(0, T ). Thus moving to the T -forward measure

is equivalent to changing the numéraire from the savings account B(t) to the zero-coupon bond

p(t, T )/p(0, T ).

By the standard formula for conditional expectation under change of measure,

ET [h(Si(T ))|Ft] =
E

[

e
−
∫
T

0
r(u)du

h(Si(T ))

∣
∣
∣
∣Ft

]

E

[

e
−
∫
T

0
r(u)du

∣
∣
∣
∣Ft

]

=

E

[

e
−
∫
T

t
r(u)du

h(Si(T ))

∣
∣
∣
∣Ft

]

p(t, T )
,

so that

C(t) = p(t, T )ET [h(Si(T ))|Ft].

The key fact about the forward measure is this:

Proposition 4.1. The forward price is a martingale under the T -forward measure.

Proof: Indeed, for s < t, we have from (4.12)

ET [Fi(t, T )|Fs] =

E





e
−
∫
T

0
r(u)du

E

[
e
−
∫
T

t
r(u)du

Si(T )

∣
∣
∣
∣Ft

]

p(t,T )

∣
∣
∣
∣
∣
∣
∣
∣

Fs







E

[

e
−
∫
T

0
r(u)du

∣
∣
∣
∣Fs

]

=

E

[

e
−
∫
t

s
r(u)du

E

[

e
−
∫
T

t
r(u)du

Si(T )

∣
∣
∣
∣Ft

]∣∣
∣
∣Fs

]

p(s, T )

=

E

[

e
−
∫
T

s
r(u)du

Si(T )

∣
∣
∣
∣Fs

]

p(s, T )
= Fi(s, T ).

This is the martingale property. ♦

Proposition 4.1 implies in particular that

ET [Si(T )] = ET [F (T, T )]

= F (0, T ), (4.16)

where F (0, T ) is given by (4.13) with t = 0. This gives us our first pricing formula.
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Proposition 4.2. Suppose Si(t) is log-normally distributed in the T -forward measure, with volatil-

ity σ. Then the no-arbitrage price at time 0 of a call option with exercise value [Si(T ) − K]+ is
given by the Black formula

C(0) = p(0, T )[F (0, T )N(d1)−KN(d2)], (4.17)

where

d1 =
log(F (0, T )/K) + σ2T/2

σ
√
T

, d2 = d1 − σ
√
T .

Proof: In view of (4.16) the price Si(T ) is given by

Si(T ) = F (0, T ) exp

(

−
1

2
σ2T + σ

√
TX

)

where X ∼ N(0, 1). The result follows by standard calculations. ♦

4.4.2 Forwards and futures

In section 4.3.4 we showed that the futures price is a martingale in the risk-neutral measure,

whereas Proposition 4.1 shows that the forward is a martingale in the T -forward measure. Thus

the convexity correction (4.10) is equal to the difference in expected value under the two measures,

E[Si(T )]− ET [Si(T )].

4.4.3 Caplets

Consider a caplet where the Libor rate is set at T1 and paid at T2. Let θ be the accrual factor.

Then the forward Libor rate at t ≤ T1 is

Lft =
1

θ

(
p(t, T1)

p(t, T2)
− 1

)

.

In this case the forward Libor rate is a martingale in the T2-forward measure. Indeed for s < t

ET2 [Lft |Fs] =
E

[

e
−
∫
T2

0
r(u)du 1

θ

(
p(t,T1)
p(t,T2)

− 1
)
|Fs

]

E

[

e
−
∫
T2

0
r(u)du |Fs

]

=

E

[

e
−
∫
t

s
r(u)du

p(t, T2)
1
θ

(
p(t,T1)
p(t,T2)

− 1
)
|Fs

]

p(s, T2)

=
1

θ

p(s, T1)− p(s, T2)
p(s, T2)

= Lfs .

Thus, as in Proposition 4.2, if the Libor rate is assumed to be log-normally distributed in the T2-

forward measure we can use the Black formula (4.17) to price the caplet, slightly modified because

of the different setting and paying times. Specifically, the price is

p(0, T2)[L
f
0N(d1)−KN(d2)]

with T := T1 in d1, d2.
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4.4.4 Swaptions

Here we have to be a little more ingenious. As discussed in section 4.3.3, the value at time t of the

right to enter a swap at time t0 > t at fixed-side rate K is

SVt = E





e
−
∫
t0

t
r(u)du

[

1−K
n∑

i=1

θip(t0, ti)− p(t0, tn)

]+∣∣
∣
∣
∣
∣
Ft





, (4.18)

where the swap coupon dates are t1, . . . , tn and θi are the accrual factors. The forward swap rate

is

Ft =
p(t, t0)− p(t, tn)∑

i θip(t, ti)
=
p(t, t0)− p(t, tn)

pA(t)
,

where pA(t) =
∑
i θip(t, ti) known as the ‘present value of a basis point’ (it is the value at time t

of unit payments received at t1, . . . , tn).

The swaption value (4.18) can be written

SVt = E

{

e
−
∫
t0

t
r(u)du

n∑

i=1

θip(t0, ti)[Ft0 −K]
+

∣
∣
∣
∣
∣
Ft

}

= E

{
∑

i

θie
−
∫
ti

t
r(u)du

[Ft0 −K]
+

∣
∣
∣
∣
∣
Ft

}

. (4.19)

Now define the annuity measure PA as

dPA

dP
=

∑
i θie

−
∫
ti

0
r(u)du

pA(0)
. (4.20)

The swaption value is then expressed in terms of the annuity measure as

SVt = pA(t)EA([Ft0 −K]
+|Ft). (4.21)

Expression (4.21) shows that a payer’s swaption is equivalent to a call option on the swap rate.

Proposition 4.3. The forward swap rate Ft is a martingale in the annuity measure, on the interval

t ∈ [0, t0].

Proof: Exercise! (The calculation is very similar to the forward Libor rate case.)

This gives us the Black formula for pricing swaptions. Assume that the swap rate Ft0 is log-

normal in the annuity measure. In view of Proposition 4.3, EA[Ft0 ] = F0 and the swaption price

at time 0 is

pA(0)[F0N(d1)−KN(d2)].

Finally, we want to understand the change-of-numéraire aspects of the annuity measure. These

are complicated by the fact that the swaption exercise value is Ft0 -measurable but dPA/dP given
by (4.20) is not Ft0 -measurable. The Radon-Nikodym derivative restricted to the σ-field Ft0 is just
the conditional expectation

dPA

dP

∣
∣
∣
∣
Ft0

= E




∑
θie
−
∫
ti

0
r(s)ds

pA(0)

∣
∣
∣
∣
∣
∣
Ft0





=
e
−
∫
t0

0
r(s)ds∑

θip(t0, ti)

pA(0)

=
pA(t0)/pA(0)

B(t0)
.
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Since this process is a P -martingale, we have shown that moving to the annuity measure PA is

equivalent to a change of numéraire from B(t) to the normalized annuity pA(t)/pA(0). Thus the

value at time 0 of any Ft0 -measurable payment Y received at time t0 is

pA(0)EA

[
Y

pA(t0)

]

.

In the swaption case, Y = pA(t0)[Ft0 − K]
+, so the value is Y = pA(0)EA ([Ft0 −K]

+), as we

found earlier.
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